{"title":"基于FPGA的生物现实脉冲神经网络","authors":"Matthieu Ambroise, T. Levi, Y. Bornat, S. Saighi","doi":"10.1109/CISS.2013.6616689","DOIUrl":null,"url":null,"abstract":"In this paper, we present a digital hardware implementation of a biorealistic spiking neural network composed of 117 Izhikevich neurons. This digital system works in hard real-time, which means that it keeps the same biological time of simulation at the millisecond scale. The Izhikevich neuron implementation requires few resources. The neurons behavior is validated by comparing their firing rate to biological data. The interneuron connections are composed of biorealistic synapses. The architecture of the network implementation allows working on a single computation core. It is freely configurable from an independent-neuron configuration to all-to-all configuration or a mix with several independent small networks. This spiking neural network will be used for the development of a new proof-of-concept Brain Machine Interface, i.e. a neuromorphic chip for neuroprosthesis, which has to replace the functionality of a damaged part of the central nervous system.","PeriodicalId":268095,"journal":{"name":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Biorealistic spiking neural network on FPGA\",\"authors\":\"Matthieu Ambroise, T. Levi, Y. Bornat, S. Saighi\",\"doi\":\"10.1109/CISS.2013.6616689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a digital hardware implementation of a biorealistic spiking neural network composed of 117 Izhikevich neurons. This digital system works in hard real-time, which means that it keeps the same biological time of simulation at the millisecond scale. The Izhikevich neuron implementation requires few resources. The neurons behavior is validated by comparing their firing rate to biological data. The interneuron connections are composed of biorealistic synapses. The architecture of the network implementation allows working on a single computation core. It is freely configurable from an independent-neuron configuration to all-to-all configuration or a mix with several independent small networks. This spiking neural network will be used for the development of a new proof-of-concept Brain Machine Interface, i.e. a neuromorphic chip for neuroprosthesis, which has to replace the functionality of a damaged part of the central nervous system.\",\"PeriodicalId\":268095,\"journal\":{\"name\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 47th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2013.6616689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2013.6616689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we present a digital hardware implementation of a biorealistic spiking neural network composed of 117 Izhikevich neurons. This digital system works in hard real-time, which means that it keeps the same biological time of simulation at the millisecond scale. The Izhikevich neuron implementation requires few resources. The neurons behavior is validated by comparing their firing rate to biological data. The interneuron connections are composed of biorealistic synapses. The architecture of the network implementation allows working on a single computation core. It is freely configurable from an independent-neuron configuration to all-to-all configuration or a mix with several independent small networks. This spiking neural network will be used for the development of a new proof-of-concept Brain Machine Interface, i.e. a neuromorphic chip for neuroprosthesis, which has to replace the functionality of a damaged part of the central nervous system.