Docflow:监督多方法文档匿名化引擎

Gabriele Morabito, Valeria Lukaj, Armando Ruggeri, M. Fazio, Maria Annunziata Astone, M. Villari
{"title":"Docflow:监督多方法文档匿名化引擎","authors":"Gabriele Morabito, Valeria Lukaj, Armando Ruggeri, M. Fazio, Maria Annunziata Astone, M. Villari","doi":"10.1109/ISCC58397.2023.10218224","DOIUrl":null,"url":null,"abstract":"Nowadays the process of anonymization of documents has been the subject of several studies and debates. By anonymization of documents, we mean the process of replacing sensitive data in order to preserve the confidentiality of documents without altering their content. In this work, we introduce Docflow, an open-source document anonymization engine capable of anonymizing documents based on specific filters chosen by the user. We applied Docflow to anonymize a set of legal documents and performed a processing performance analysis. By providing a Markdown input file to be anonymized, Docflow is able to redact all information according to users' choices, preserving the document content. Docflow will be integrated with NLP algorithms for the generation of the Markdown source file starting from documents already processed in different formats, but always with human supervision in the loop.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Docflow: Supervised Multi-Method Document Anonymization Engine\",\"authors\":\"Gabriele Morabito, Valeria Lukaj, Armando Ruggeri, M. Fazio, Maria Annunziata Astone, M. Villari\",\"doi\":\"10.1109/ISCC58397.2023.10218224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays the process of anonymization of documents has been the subject of several studies and debates. By anonymization of documents, we mean the process of replacing sensitive data in order to preserve the confidentiality of documents without altering their content. In this work, we introduce Docflow, an open-source document anonymization engine capable of anonymizing documents based on specific filters chosen by the user. We applied Docflow to anonymize a set of legal documents and performed a processing performance analysis. By providing a Markdown input file to be anonymized, Docflow is able to redact all information according to users' choices, preserving the document content. Docflow will be integrated with NLP algorithms for the generation of the Markdown source file starting from documents already processed in different formats, but always with human supervision in the loop.\",\"PeriodicalId\":265337,\"journal\":{\"name\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC58397.2023.10218224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,文件的匿名化过程一直是一些研究和争论的主题。通过文件的匿名化,我们指的是替换敏感数据的过程,以便在不改变文件内容的情况下保持文件的机密性。在这项工作中,我们介绍了Docflow,一个开源文档匿名化引擎,能够根据用户选择的特定过滤器对文档进行匿名化。我们应用Docflow对一组法律文件进行了匿名化处理,并执行了处理性能分析。通过提供匿名化的Markdown输入文件,Docflow能够根据用户的选择编辑所有信息,并保留文档内容。Docflow将与NLP算法集成,从已经以不同格式处理的文档开始生成Markdown源文件,但在循环中始终有人工监督。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Docflow: Supervised Multi-Method Document Anonymization Engine
Nowadays the process of anonymization of documents has been the subject of several studies and debates. By anonymization of documents, we mean the process of replacing sensitive data in order to preserve the confidentiality of documents without altering their content. In this work, we introduce Docflow, an open-source document anonymization engine capable of anonymizing documents based on specific filters chosen by the user. We applied Docflow to anonymize a set of legal documents and performed a processing performance analysis. By providing a Markdown input file to be anonymized, Docflow is able to redact all information according to users' choices, preserving the document content. Docflow will be integrated with NLP algorithms for the generation of the Markdown source file starting from documents already processed in different formats, but always with human supervision in the loop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信