基于高分辨率合成光谱定量相位成像的高频增强

Linpeng Lu, Jiasong Sun, Yao Fan, Jialin Zhang, Qian Chen, C. Zuo
{"title":"基于高分辨率合成光谱定量相位成像的高频增强","authors":"Linpeng Lu, Jiasong Sun, Yao Fan, Jialin Zhang, Qian Chen, C. Zuo","doi":"10.1117/12.2586428","DOIUrl":null,"url":null,"abstract":"According to the phase gradient transfer function (PGTF) derived from the phase space theory, the phase recovery algorithm based on the transport of intensity equation (TIE) has the problem that the high-frequency phase is underestimated due to the coherence effect of the limited aperture system under partially coherent illumination. Therefore, based on the theory of PGTF and phase transfer function (PTF), a phase reconstruction algorithm named high-resolution synthetic spectrum (HSS) method combining the TIE and the PTF-based deconvolution is proposed. This technique broadens the application range and provides high contrast, high accuracy, and highresolution quantitative phase results with high robustness. The performances of this technology are demonstrated by simulation and experiments, showing efficient for phase retrieval in the near-Fresnel region. Such a highresolution method can offer a flexible and cost-effective alternative for biomedical research and cell analysis, providing new avenues to design powerful computational imaging systems","PeriodicalId":370739,"journal":{"name":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-frequency enhanced based on high-resolution synthetic spectrum quantitative phase imaging\",\"authors\":\"Linpeng Lu, Jiasong Sun, Yao Fan, Jialin Zhang, Qian Chen, C. Zuo\",\"doi\":\"10.1117/12.2586428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the phase gradient transfer function (PGTF) derived from the phase space theory, the phase recovery algorithm based on the transport of intensity equation (TIE) has the problem that the high-frequency phase is underestimated due to the coherence effect of the limited aperture system under partially coherent illumination. Therefore, based on the theory of PGTF and phase transfer function (PTF), a phase reconstruction algorithm named high-resolution synthetic spectrum (HSS) method combining the TIE and the PTF-based deconvolution is proposed. This technique broadens the application range and provides high contrast, high accuracy, and highresolution quantitative phase results with high robustness. The performances of this technology are demonstrated by simulation and experiments, showing efficient for phase retrieval in the near-Fresnel region. Such a highresolution method can offer a flexible and cost-effective alternative for biomedical research and cell analysis, providing new avenues to design powerful computational imaging systems\",\"PeriodicalId\":370739,\"journal\":{\"name\":\"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2586428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics and Optical Engineering and the Annual West China Photonics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2586428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据相空间理论推导出的相位梯度传递函数(PGTF),基于强度输运方程(TIE)的相位恢复算法存在部分相干照明下有限孔径系统的相干效应导致高频相位被低估的问题。因此,基于PGTF和相传递函数(PTF)理论,提出了一种结合TIE和基于PTF的反褶积的高分辨率合成谱(HSS)相重建算法。该技术拓宽了应用范围,提供了高对比度、高精度、高分辨率、高鲁棒性的定量相位结果。通过仿真和实验验证了该技术的性能,显示出在近菲涅耳区域相位恢复的有效性。这种高分辨率的方法可以为生物医学研究和细胞分析提供灵活和经济的替代方案,为设计强大的计算成像系统提供了新的途径
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-frequency enhanced based on high-resolution synthetic spectrum quantitative phase imaging
According to the phase gradient transfer function (PGTF) derived from the phase space theory, the phase recovery algorithm based on the transport of intensity equation (TIE) has the problem that the high-frequency phase is underestimated due to the coherence effect of the limited aperture system under partially coherent illumination. Therefore, based on the theory of PGTF and phase transfer function (PTF), a phase reconstruction algorithm named high-resolution synthetic spectrum (HSS) method combining the TIE and the PTF-based deconvolution is proposed. This technique broadens the application range and provides high contrast, high accuracy, and highresolution quantitative phase results with high robustness. The performances of this technology are demonstrated by simulation and experiments, showing efficient for phase retrieval in the near-Fresnel region. Such a highresolution method can offer a flexible and cost-effective alternative for biomedical research and cell analysis, providing new avenues to design powerful computational imaging systems
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信