{"title":"基于双估计器的端到端学习剩余使用寿命估计","authors":"Masanao Natsumeda, Haifeng Chen","doi":"10.1109/ICPHM49022.2020.9187025","DOIUrl":null,"url":null,"abstract":"Remaining Useful Life (RUL) estimation is a key element in Predictive maintenance. System agnostic approaches which just utilize sensor and operational time series have gained popularity due to its ease of implementation. Due to the nature of measurement or degradation mechanisms, its accurate estimation is not always feasible. Existing methods suppose the range of RUL with feasible estimation is given from results at upstream tasks or prior knowledge. In this work, we propose the novel framework of end-to-end learning for RUL estimation, which is called RULENet. RULENet simultaneously optimizes its Dual-estimator for RUL estimation and its feasible range estimation. Experimental results on NASA C-MAPSS benchmark data show the superiority of the end-to-end framework.","PeriodicalId":148899,"journal":{"name":"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RULENet: End-to-end Learning with the Dual-estimator for Remaining Useful Life Estimation\",\"authors\":\"Masanao Natsumeda, Haifeng Chen\",\"doi\":\"10.1109/ICPHM49022.2020.9187025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remaining Useful Life (RUL) estimation is a key element in Predictive maintenance. System agnostic approaches which just utilize sensor and operational time series have gained popularity due to its ease of implementation. Due to the nature of measurement or degradation mechanisms, its accurate estimation is not always feasible. Existing methods suppose the range of RUL with feasible estimation is given from results at upstream tasks or prior knowledge. In this work, we propose the novel framework of end-to-end learning for RUL estimation, which is called RULENet. RULENet simultaneously optimizes its Dual-estimator for RUL estimation and its feasible range estimation. Experimental results on NASA C-MAPSS benchmark data show the superiority of the end-to-end framework.\",\"PeriodicalId\":148899,\"journal\":{\"name\":\"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM49022.2020.9187025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM49022.2020.9187025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RULENet: End-to-end Learning with the Dual-estimator for Remaining Useful Life Estimation
Remaining Useful Life (RUL) estimation is a key element in Predictive maintenance. System agnostic approaches which just utilize sensor and operational time series have gained popularity due to its ease of implementation. Due to the nature of measurement or degradation mechanisms, its accurate estimation is not always feasible. Existing methods suppose the range of RUL with feasible estimation is given from results at upstream tasks or prior knowledge. In this work, we propose the novel framework of end-to-end learning for RUL estimation, which is called RULENet. RULENet simultaneously optimizes its Dual-estimator for RUL estimation and its feasible range estimation. Experimental results on NASA C-MAPSS benchmark data show the superiority of the end-to-end framework.