并行两遍MDL上下文树算法的性能

Nikhil Krishnan, D. Baron
{"title":"并行两遍MDL上下文树算法的性能","authors":"Nikhil Krishnan, D. Baron","doi":"10.1109/GlobalSIP.2014.7032133","DOIUrl":null,"url":null,"abstract":"Computing problems that handle large amounts of data necessitate the use of lossless data compression for efficient storage and transmission. We present numerical results that showcase the advantages of a novel lossless universal data compression algorithm that uses parallel computational units to increase the throughput with minimal degradation in the compression quality. Our approach is to divide the data into blocks, estimate the minimum description length (MDL) context tree source underlying the entire input, and compress each block in parallel based on the MDL source. Numerical results from a prototype implementation suggest that our algorithm offers a better trade-off between compression and throughput than competing universal data compression algorithms.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance of parallel two-pass MDL context tree algorithm\",\"authors\":\"Nikhil Krishnan, D. Baron\",\"doi\":\"10.1109/GlobalSIP.2014.7032133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing problems that handle large amounts of data necessitate the use of lossless data compression for efficient storage and transmission. We present numerical results that showcase the advantages of a novel lossless universal data compression algorithm that uses parallel computational units to increase the throughput with minimal degradation in the compression quality. Our approach is to divide the data into blocks, estimate the minimum description length (MDL) context tree source underlying the entire input, and compress each block in parallel based on the MDL source. Numerical results from a prototype implementation suggest that our algorithm offers a better trade-off between compression and throughput than competing universal data compression algorithms.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

处理大量数据的计算问题需要使用无损数据压缩来实现高效的存储和传输。我们给出的数值结果展示了一种新的无损通用数据压缩算法的优势,该算法使用并行计算单元来提高吞吐量,同时最小化压缩质量的退化。我们的方法是将数据划分为块,估计整个输入的最小描述长度(MDL)上下文树源,并基于MDL源并行压缩每个块。原型实现的数值结果表明,我们的算法比竞争的通用数据压缩算法在压缩和吞吐量之间提供了更好的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of parallel two-pass MDL context tree algorithm
Computing problems that handle large amounts of data necessitate the use of lossless data compression for efficient storage and transmission. We present numerical results that showcase the advantages of a novel lossless universal data compression algorithm that uses parallel computational units to increase the throughput with minimal degradation in the compression quality. Our approach is to divide the data into blocks, estimate the minimum description length (MDL) context tree source underlying the entire input, and compress each block in parallel based on the MDL source. Numerical results from a prototype implementation suggest that our algorithm offers a better trade-off between compression and throughput than competing universal data compression algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信