Thong Huynh-Van, Khuong Nguyen-An, Trinh Le Ba Khanh, Hyung-Jeong Yang, T. A. Tran, Soohyung Kim
{"title":"学习使用行和文本信息检测文档图像中的表","authors":"Thong Huynh-Van, Khuong Nguyen-An, Trinh Le Ba Khanh, Hyung-Jeong Yang, T. A. Tran, Soohyung Kim","doi":"10.1145/3184066.3184091","DOIUrl":null,"url":null,"abstract":"Table detection is a crucial step in many document analysis applications as tables are used for presenting essential information to readers in a structured manner. It is still a challenging problem due to the variety of table structures and the complexity of document layout. This paper presents a hybrid method consisting of three fundamental steps to detect table zones: classification of the regions, detection of the tables that constitute intersecting horizontal and vertical lines, and identification of the tables made up by only parallel lines. Experiments on the UW-III dataset show that the obtained results are very promising.","PeriodicalId":109559,"journal":{"name":"International Conference on Machine Learning and Soft Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Learning to detect tables in document images using line and text information\",\"authors\":\"Thong Huynh-Van, Khuong Nguyen-An, Trinh Le Ba Khanh, Hyung-Jeong Yang, T. A. Tran, Soohyung Kim\",\"doi\":\"10.1145/3184066.3184091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Table detection is a crucial step in many document analysis applications as tables are used for presenting essential information to readers in a structured manner. It is still a challenging problem due to the variety of table structures and the complexity of document layout. This paper presents a hybrid method consisting of three fundamental steps to detect table zones: classification of the regions, detection of the tables that constitute intersecting horizontal and vertical lines, and identification of the tables made up by only parallel lines. Experiments on the UW-III dataset show that the obtained results are very promising.\",\"PeriodicalId\":109559,\"journal\":{\"name\":\"International Conference on Machine Learning and Soft Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3184066.3184091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184066.3184091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning to detect tables in document images using line and text information
Table detection is a crucial step in many document analysis applications as tables are used for presenting essential information to readers in a structured manner. It is still a challenging problem due to the variety of table structures and the complexity of document layout. This paper presents a hybrid method consisting of three fundamental steps to detect table zones: classification of the regions, detection of the tables that constitute intersecting horizontal and vertical lines, and identification of the tables made up by only parallel lines. Experiments on the UW-III dataset show that the obtained results are very promising.