ELINT信号分类的人工智能算法比较

J. Perdoch, S. Gazovová, Z. Matousek, J. Ochodnicky
{"title":"ELINT信号分类的人工智能算法比较","authors":"J. Perdoch, S. Gazovová, Z. Matousek, J. Ochodnicky","doi":"10.1109/NTSP49686.2020.9229543","DOIUrl":null,"url":null,"abstract":"Ability to automatically identify objects of interest and to automatically classify their signals belongs to essential functionalities of electronic intelligence systems. Objects identification results and signals classification results are conditioned by accurate measurement and technical analysis of objects signal parameters. Classification algorithm based on Feedforward Neural Network, and classification algorithms based on Support-Vector Machine, with three types of Kernel Function, are tested and compared in this paper as the first stage of objects identification in electronic intelligence systems.","PeriodicalId":197079,"journal":{"name":"2020 New Trends in Signal Processing (NTSP)","volume":"234-235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Artificial Intelligence Algorithms for ELINT Signals Classification\",\"authors\":\"J. Perdoch, S. Gazovová, Z. Matousek, J. Ochodnicky\",\"doi\":\"10.1109/NTSP49686.2020.9229543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ability to automatically identify objects of interest and to automatically classify their signals belongs to essential functionalities of electronic intelligence systems. Objects identification results and signals classification results are conditioned by accurate measurement and technical analysis of objects signal parameters. Classification algorithm based on Feedforward Neural Network, and classification algorithms based on Support-Vector Machine, with three types of Kernel Function, are tested and compared in this paper as the first stage of objects identification in electronic intelligence systems.\",\"PeriodicalId\":197079,\"journal\":{\"name\":\"2020 New Trends in Signal Processing (NTSP)\",\"volume\":\"234-235 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 New Trends in Signal Processing (NTSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NTSP49686.2020.9229543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 New Trends in Signal Processing (NTSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTSP49686.2020.9229543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动识别感兴趣的对象并对其信号进行自动分类的能力属于电子情报系统的基本功能。物体识别结果和信号分类结果取决于物体信号参数的准确测量和技术分析。作为电子智能系统中目标识别的第一阶段,本文对基于前馈神经网络的分类算法和基于三种核函数的支持向量机分类算法进行了测试和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Artificial Intelligence Algorithms for ELINT Signals Classification
Ability to automatically identify objects of interest and to automatically classify their signals belongs to essential functionalities of electronic intelligence systems. Objects identification results and signals classification results are conditioned by accurate measurement and technical analysis of objects signal parameters. Classification algorithm based on Feedforward Neural Network, and classification algorithms based on Support-Vector Machine, with three types of Kernel Function, are tested and compared in this paper as the first stage of objects identification in electronic intelligence systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信