南达科他州拱心石拉什莫尔山国家纪念馆岩体特征及稳定性评价

S. L. Poluga, A. Shakoor, E. Bilderback
{"title":"南达科他州拱心石拉什莫尔山国家纪念馆岩体特征及稳定性评价","authors":"S. L. Poluga, A. Shakoor, E. Bilderback","doi":"10.2113/EEG-2042","DOIUrl":null,"url":null,"abstract":"The purpose of this study was to characterize the rock mass at Mount Rushmore National Memorial (MORU) and to evaluate the stability of the presidential sculptures. The sculptures are carved in granite, but quartz-mica schist and minor outcrops of pegmatite are also present within the site area. We divided the MORU area into four “regions” to collect discontinuity data. Since the sculptures were not accessible during this study, we used light detection and ranging (LiDAR) data and Split-FX software to determine the orientations of both the discontinuities and the slopes on the sculptures. The rock mass characterization results, using both the Rock Mass Rating system and the Q-system, indicate the granite, schist, and pegmatite classify as fair to good rock. Kinematic analysis results indicate that the potential for planar, wedge, and toppling failures exists for various slopes on each of the sculptures. The factor of safety (FS) values against planar and wedge sliding, ignoring cohesion, range from 0.1 to 0.8 and from 0.2 to 1.3, respectively. Since failures have not been observed at the memorial, we back-calculated the amount of cohesion required to raise the FS values to >1. The back-calculation results show that both cohesion and friction contribute to stability of the sculptures. Using the Slide program, we performed an overall slope probabilistic analysis for the slopes on which the MORU sculptures are located. The analysis determines the mean factor of safety (FSM), reliability index (RI), and probability of failure (PF) for the slopes. For the static condition, the analysis resulted in FSM, RI, and PF values ranging from 3.3 to 4.5 percent, 3.3 to 7.8 percent, and 0 percent, respectively. With a seismic load coefficient of 0.14 applied to the slopes, the corresponding values were: 2.6 to 4.1 percent, 2.9 to 4.7 percent, and 0 percent. For both the static and seismic conditions, the results indicate that, overall, the slopes of the sculptures are stable.","PeriodicalId":138906,"journal":{"name":"Environmental and Engineering Geoscience","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rock Mass Characterization and Stability Evaluation of Mount Rushmore National Memorial, Keystone, South Dakota\",\"authors\":\"S. L. Poluga, A. Shakoor, E. Bilderback\",\"doi\":\"10.2113/EEG-2042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study was to characterize the rock mass at Mount Rushmore National Memorial (MORU) and to evaluate the stability of the presidential sculptures. The sculptures are carved in granite, but quartz-mica schist and minor outcrops of pegmatite are also present within the site area. We divided the MORU area into four “regions” to collect discontinuity data. Since the sculptures were not accessible during this study, we used light detection and ranging (LiDAR) data and Split-FX software to determine the orientations of both the discontinuities and the slopes on the sculptures. The rock mass characterization results, using both the Rock Mass Rating system and the Q-system, indicate the granite, schist, and pegmatite classify as fair to good rock. Kinematic analysis results indicate that the potential for planar, wedge, and toppling failures exists for various slopes on each of the sculptures. The factor of safety (FS) values against planar and wedge sliding, ignoring cohesion, range from 0.1 to 0.8 and from 0.2 to 1.3, respectively. Since failures have not been observed at the memorial, we back-calculated the amount of cohesion required to raise the FS values to >1. The back-calculation results show that both cohesion and friction contribute to stability of the sculptures. Using the Slide program, we performed an overall slope probabilistic analysis for the slopes on which the MORU sculptures are located. The analysis determines the mean factor of safety (FSM), reliability index (RI), and probability of failure (PF) for the slopes. For the static condition, the analysis resulted in FSM, RI, and PF values ranging from 3.3 to 4.5 percent, 3.3 to 7.8 percent, and 0 percent, respectively. With a seismic load coefficient of 0.14 applied to the slopes, the corresponding values were: 2.6 to 4.1 percent, 2.9 to 4.7 percent, and 0 percent. For both the static and seismic conditions, the results indicate that, overall, the slopes of the sculptures are stable.\",\"PeriodicalId\":138906,\"journal\":{\"name\":\"Environmental and Engineering Geoscience\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Engineering Geoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2113/EEG-2042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Engineering Geoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2113/EEG-2042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是描述拉什莫尔山国家纪念馆(MORU)的岩体特征,并评估总统雕塑的稳定性。这些雕塑是在花岗岩上雕刻的,但在遗址区域内也存在石英云母片岩和少量的伟晶岩露头。我们将MORU区域划分为四个“区域”来收集不连续数据。由于在本次研究中雕塑是不可接近的,我们使用光探测和测距(LiDAR)数据和Split-FX软件来确定雕塑上的不连续面和斜坡的方向。采用岩体等级系统和q -系统对岩体进行表征,结果表明花岗岩、片岩和伟晶岩属于中等至优良岩石。运动学分析结果表明,每个雕塑在不同的斜坡上存在平面、楔形和倾倒破坏的可能性。不考虑黏聚力的平面滑动和楔形滑动的安全系数(FS)分别为0.1 ~ 0.8和0.2 ~ 1.3。由于在内存中没有观察到失败,因此我们反向计算了将FS值提高到>1所需的内聚量。反算结果表明,黏聚力和摩擦力对结构稳定均有贡献。使用Slide程序,我们对MORU雕塑所在的斜坡进行了总体坡度概率分析。分析确定了边坡的平均安全系数(FSM)、可靠度指数(RI)和失效概率(PF)。对于静态条件,分析得出的FSM、RI和PF值分别为3.3%至4.5%、3.3%至7.8%和0%。当地震荷载系数为0.14时,对应的值分别为:2.6% ~ 4.1%、2.9% ~ 4.7%和0%。在静力和地震条件下,结果表明,总体而言,雕塑的斜坡是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rock Mass Characterization and Stability Evaluation of Mount Rushmore National Memorial, Keystone, South Dakota
The purpose of this study was to characterize the rock mass at Mount Rushmore National Memorial (MORU) and to evaluate the stability of the presidential sculptures. The sculptures are carved in granite, but quartz-mica schist and minor outcrops of pegmatite are also present within the site area. We divided the MORU area into four “regions” to collect discontinuity data. Since the sculptures were not accessible during this study, we used light detection and ranging (LiDAR) data and Split-FX software to determine the orientations of both the discontinuities and the slopes on the sculptures. The rock mass characterization results, using both the Rock Mass Rating system and the Q-system, indicate the granite, schist, and pegmatite classify as fair to good rock. Kinematic analysis results indicate that the potential for planar, wedge, and toppling failures exists for various slopes on each of the sculptures. The factor of safety (FS) values against planar and wedge sliding, ignoring cohesion, range from 0.1 to 0.8 and from 0.2 to 1.3, respectively. Since failures have not been observed at the memorial, we back-calculated the amount of cohesion required to raise the FS values to >1. The back-calculation results show that both cohesion and friction contribute to stability of the sculptures. Using the Slide program, we performed an overall slope probabilistic analysis for the slopes on which the MORU sculptures are located. The analysis determines the mean factor of safety (FSM), reliability index (RI), and probability of failure (PF) for the slopes. For the static condition, the analysis resulted in FSM, RI, and PF values ranging from 3.3 to 4.5 percent, 3.3 to 7.8 percent, and 0 percent, respectively. With a seismic load coefficient of 0.14 applied to the slopes, the corresponding values were: 2.6 to 4.1 percent, 2.9 to 4.7 percent, and 0 percent. For both the static and seismic conditions, the results indicate that, overall, the slopes of the sculptures are stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信