一种基于svm的集成入侵检测方法

S. Sahu, Akanksha Katiyar, Kanchan Mala Kumari, G. Kumar, D. Mohapatra
{"title":"一种基于svm的集成入侵检测方法","authors":"S. Sahu, Akanksha Katiyar, Kanchan Mala Kumari, G. Kumar, D. Mohapatra","doi":"10.4018/IJITWE.2019010104","DOIUrl":null,"url":null,"abstract":"The objective of this article is to develop an intrusion detection model aimed at distinguishing attacks in the network. The aim of building IDS relies on upon preprocessing of intrusion data, choosing most relevant features and in the plan of an efficient learning algorithm that properly groups the normal and malicious examples. In this experiment, the detection model uses an ensemble approach of supervised (SVM) and unsupervised (K-Means) to detect the patterns. This technique first divides the data and forms two clusters as per K-Means and labels the clusters using the Support Vector Machine (SVM). The parameters of K-Means and SVM are tuned and optimized using an intrusion dataset. The SVM provides up to 88%, and K-Means provides up to 83% accuracy individually. However, the ensemble of K-Means and SVM provides more than 99% on three benchmarked datasets in less time. The SVM only classifies three instances of each cluster randomly and labels them as per a majority voting approach. The proposed approach outperforms compared to earlier ensemble approaches on intrusion datasets.","PeriodicalId":222340,"journal":{"name":"Int. J. Inf. Technol. Web Eng.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An SVM-Based Ensemble Approach for Intrusion Detection\",\"authors\":\"S. Sahu, Akanksha Katiyar, Kanchan Mala Kumari, G. Kumar, D. Mohapatra\",\"doi\":\"10.4018/IJITWE.2019010104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this article is to develop an intrusion detection model aimed at distinguishing attacks in the network. The aim of building IDS relies on upon preprocessing of intrusion data, choosing most relevant features and in the plan of an efficient learning algorithm that properly groups the normal and malicious examples. In this experiment, the detection model uses an ensemble approach of supervised (SVM) and unsupervised (K-Means) to detect the patterns. This technique first divides the data and forms two clusters as per K-Means and labels the clusters using the Support Vector Machine (SVM). The parameters of K-Means and SVM are tuned and optimized using an intrusion dataset. The SVM provides up to 88%, and K-Means provides up to 83% accuracy individually. However, the ensemble of K-Means and SVM provides more than 99% on three benchmarked datasets in less time. The SVM only classifies three instances of each cluster randomly and labels them as per a majority voting approach. The proposed approach outperforms compared to earlier ensemble approaches on intrusion datasets.\",\"PeriodicalId\":222340,\"journal\":{\"name\":\"Int. J. Inf. Technol. Web Eng.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Web Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJITWE.2019010104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Web Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJITWE.2019010104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文的目标是开发一个入侵检测模型,旨在区分网络中的攻击。建立入侵检测系统的目的依赖于对入侵数据的预处理,选择最相关的特征,并计划一种有效的学习算法,将正常和恶意示例正确分组。在本实验中,检测模型使用有监督(SVM)和无监督(K-Means)的集成方法来检测模式。该技术首先根据K-Means对数据进行划分,形成两个聚类,并使用支持向量机(SVM)对聚类进行标记。利用入侵数据集对K-Means和SVM的参数进行了调优。SVM提供高达88%的准确率,K-Means提供高达83%的准确率。然而,K-Means和SVM的集合在更短的时间内提供了超过99%的三个基准数据集。支持向量机只随机对每个集群的三个实例进行分类,并根据多数投票方法对它们进行标记。该方法在入侵数据集上优于先前的集成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An SVM-Based Ensemble Approach for Intrusion Detection
The objective of this article is to develop an intrusion detection model aimed at distinguishing attacks in the network. The aim of building IDS relies on upon preprocessing of intrusion data, choosing most relevant features and in the plan of an efficient learning algorithm that properly groups the normal and malicious examples. In this experiment, the detection model uses an ensemble approach of supervised (SVM) and unsupervised (K-Means) to detect the patterns. This technique first divides the data and forms two clusters as per K-Means and labels the clusters using the Support Vector Machine (SVM). The parameters of K-Means and SVM are tuned and optimized using an intrusion dataset. The SVM provides up to 88%, and K-Means provides up to 83% accuracy individually. However, the ensemble of K-Means and SVM provides more than 99% on three benchmarked datasets in less time. The SVM only classifies three instances of each cluster randomly and labels them as per a majority voting approach. The proposed approach outperforms compared to earlier ensemble approaches on intrusion datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信