P. Amorim, D. Kozen, R. Mardare, P. Panangaden, Michael Roberts
{"title":"随机λ-微积分的通用语义","authors":"P. Amorim, D. Kozen, R. Mardare, P. Panangaden, Michael Roberts","doi":"10.1109/LICS52264.2021.9470747","DOIUrl":null,"url":null,"abstract":"We define sound and adequate denotational and operational semantics for the stochastic lambda calculus. These two semantic approaches build on previous work that used an explicit source of randomness to reason about higher-order probabilistic programs.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Universal Semantics for the Stochastic λ-Calculus\",\"authors\":\"P. Amorim, D. Kozen, R. Mardare, P. Panangaden, Michael Roberts\",\"doi\":\"10.1109/LICS52264.2021.9470747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define sound and adequate denotational and operational semantics for the stochastic lambda calculus. These two semantic approaches build on previous work that used an explicit source of randomness to reason about higher-order probabilistic programs.\",\"PeriodicalId\":174663,\"journal\":{\"name\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS52264.2021.9470747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We define sound and adequate denotational and operational semantics for the stochastic lambda calculus. These two semantic approaches build on previous work that used an explicit source of randomness to reason about higher-order probabilistic programs.