Rémi Auguste, Ahmed El Ghini, M. Bilasco, Nacim Ihaddadene, C. Djeraba
{"title":"用多变量时间序列建模测量视频序列之间的运动相似度","authors":"Rémi Auguste, Ahmed El Ghini, M. Bilasco, Nacim Ihaddadene, C. Djeraba","doi":"10.1109/ICMWI.2010.5647919","DOIUrl":null,"url":null,"abstract":"The analysis and interpretation of video contents is an important component of modern vision applications such as surveillance, motion synthesis and web-based user interfaces. A requirement shared by these very different applications is the ability to learn statistical models of appearance and motion from a collection of videos, and then use them for recognizing actions or persons in a new video. Measuring the similarity and dissimilarity between video sequences is crucial in any video sequences analysis and decision-making process. Furthermore, many data analysis processes effectively deal with moving objects and need to compute the similarity between trajectories. In this paper, we propose a similarity measure for multivariate time series using the Euclidean distance based on Vector Autoregressive (VAR) models. The proposed approach allows us to identify and recognize actions of persons in video sequences. The performance of our methodology is tested on a real dataset.","PeriodicalId":404577,"journal":{"name":"2010 International Conference on Machine and Web Intelligence","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Motion similarity measure between video sequences using multivariate time series modeling\",\"authors\":\"Rémi Auguste, Ahmed El Ghini, M. Bilasco, Nacim Ihaddadene, C. Djeraba\",\"doi\":\"10.1109/ICMWI.2010.5647919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis and interpretation of video contents is an important component of modern vision applications such as surveillance, motion synthesis and web-based user interfaces. A requirement shared by these very different applications is the ability to learn statistical models of appearance and motion from a collection of videos, and then use them for recognizing actions or persons in a new video. Measuring the similarity and dissimilarity between video sequences is crucial in any video sequences analysis and decision-making process. Furthermore, many data analysis processes effectively deal with moving objects and need to compute the similarity between trajectories. In this paper, we propose a similarity measure for multivariate time series using the Euclidean distance based on Vector Autoregressive (VAR) models. The proposed approach allows us to identify and recognize actions of persons in video sequences. The performance of our methodology is tested on a real dataset.\",\"PeriodicalId\":404577,\"journal\":{\"name\":\"2010 International Conference on Machine and Web Intelligence\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine and Web Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMWI.2010.5647919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine and Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMWI.2010.5647919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motion similarity measure between video sequences using multivariate time series modeling
The analysis and interpretation of video contents is an important component of modern vision applications such as surveillance, motion synthesis and web-based user interfaces. A requirement shared by these very different applications is the ability to learn statistical models of appearance and motion from a collection of videos, and then use them for recognizing actions or persons in a new video. Measuring the similarity and dissimilarity between video sequences is crucial in any video sequences analysis and decision-making process. Furthermore, many data analysis processes effectively deal with moving objects and need to compute the similarity between trajectories. In this paper, we propose a similarity measure for multivariate time series using the Euclidean distance based on Vector Autoregressive (VAR) models. The proposed approach allows us to identify and recognize actions of persons in video sequences. The performance of our methodology is tested on a real dataset.