用出埃及法分析时变问题

M. Sadiku, C. Akujuobi, S. Musa, S. Nelatury
{"title":"用出埃及法分析时变问题","authors":"M. Sadiku, C. Akujuobi, S. Musa, S. Nelatury","doi":"10.1109/SECON.2008.4494314","DOIUrl":null,"url":null,"abstract":"The Monte Carlo method is well known for solving static problems such as Laplace's or Poisson 's equation. In this paper, we extend the applicability of the conventional Monte Carlo method to solve time-dependent (heat) problems. We apply the Exodus method to these problems, which is not subject to randomness, as are the classical Monte Carlo methods. We present results in one- dimensional (1-D) and two-dimensional (2-D) that agree with the exact solutions.","PeriodicalId":188817,"journal":{"name":"IEEE SoutheastCon 2008","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis of time-dependent problems using the Exodus method\",\"authors\":\"M. Sadiku, C. Akujuobi, S. Musa, S. Nelatury\",\"doi\":\"10.1109/SECON.2008.4494314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Monte Carlo method is well known for solving static problems such as Laplace's or Poisson 's equation. In this paper, we extend the applicability of the conventional Monte Carlo method to solve time-dependent (heat) problems. We apply the Exodus method to these problems, which is not subject to randomness, as are the classical Monte Carlo methods. We present results in one- dimensional (1-D) and two-dimensional (2-D) that agree with the exact solutions.\",\"PeriodicalId\":188817,\"journal\":{\"name\":\"IEEE SoutheastCon 2008\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE SoutheastCon 2008\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2008.4494314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE SoutheastCon 2008","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2008.4494314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

蒙特卡罗方法以解决诸如拉普拉斯或泊松方程之类的静态问题而闻名。在本文中,我们扩展了传统蒙特卡罗方法在求解时间相关(热)问题中的适用性。我们将出埃及法应用于这些问题,它不像经典的蒙特卡罗方法那样受随机性的约束。我们在一维(1-D)和二维(2-D)中给出了与精确解一致的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of time-dependent problems using the Exodus method
The Monte Carlo method is well known for solving static problems such as Laplace's or Poisson 's equation. In this paper, we extend the applicability of the conventional Monte Carlo method to solve time-dependent (heat) problems. We apply the Exodus method to these problems, which is not subject to randomness, as are the classical Monte Carlo methods. We present results in one- dimensional (1-D) and two-dimensional (2-D) that agree with the exact solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信