基于线性回归、人工神经网络和回归树的电网谐波贡献影响评估

U. C. P. Júnior, A. R. A. Manito, G. Rocha, F. P. Monteiro, Carminda C. Moura Moura de Carvalho, U. Bezerra, Maria Emília Lima de Tostes
{"title":"基于线性回归、人工神经网络和回归树的电网谐波贡献影响评估","authors":"U. C. P. Júnior, A. R. A. Manito, G. Rocha, F. P. Monteiro, Carminda C. Moura Moura de Carvalho, U. Bezerra, Maria Emília Lima de Tostes","doi":"10.1109/TDC-LA.2018.8511688","DOIUrl":null,"url":null,"abstract":"This work shows the evaluation of the harmonic contribution at the common coupling point (CCP) of the electric network of the Federal University of Pará (UFPA), which connects four main feeders that have linear and nonlinear loads connected along them. In this article, emphasis is placed on the CCP with the local electric utility and the four electric power feeders of the campus, in order to evaluate the harmonic contribution of each feeder in the CCP of the university, using linear regression techniques and computational intelligences such as artificial neural networks and regression trees. The results of the three analyzes are compared to each other, in order to classify the feeders in relation to their respective impact on the campus electrical grid. The analysis results show that one of the feeders has a more significant impact on the voltage distortion at the CCP of the university, giving subsidies for a more efficient mitigating action.","PeriodicalId":267301,"journal":{"name":"2018 IEEE PES Transmission & Distribution Conference and Exhibition - Latin America (T&D-LA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evaluation of Harmonic Contribution Impacts in the Electric Grid Through Linear Regression, Artificial Neural Networks and Regression tree\",\"authors\":\"U. C. P. Júnior, A. R. A. Manito, G. Rocha, F. P. Monteiro, Carminda C. Moura Moura de Carvalho, U. Bezerra, Maria Emília Lima de Tostes\",\"doi\":\"10.1109/TDC-LA.2018.8511688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work shows the evaluation of the harmonic contribution at the common coupling point (CCP) of the electric network of the Federal University of Pará (UFPA), which connects four main feeders that have linear and nonlinear loads connected along them. In this article, emphasis is placed on the CCP with the local electric utility and the four electric power feeders of the campus, in order to evaluate the harmonic contribution of each feeder in the CCP of the university, using linear regression techniques and computational intelligences such as artificial neural networks and regression trees. The results of the three analyzes are compared to each other, in order to classify the feeders in relation to their respective impact on the campus electrical grid. The analysis results show that one of the feeders has a more significant impact on the voltage distortion at the CCP of the university, giving subsidies for a more efficient mitigating action.\",\"PeriodicalId\":267301,\"journal\":{\"name\":\"2018 IEEE PES Transmission & Distribution Conference and Exhibition - Latin America (T&D-LA)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE PES Transmission & Distribution Conference and Exhibition - Latin America (T&D-LA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC-LA.2018.8511688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE PES Transmission & Distribution Conference and Exhibition - Latin America (T&D-LA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC-LA.2018.8511688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

这项工作显示了帕尔联邦大学(UFPA)电网的公共耦合点(CCP)的谐波贡献的评估,该网络连接了四个主要馈线,这些馈线有线性和非线性负载连接在它们上。本文将重点放在当地电力公司和校园的四个电力馈线的CCP上,利用线性回归技术和人工神经网络和回归树等计算智能来评估每个馈线在大学CCP中的谐波贡献。将这三种分析的结果相互比较,以便根据各自对校园电网的影响对馈线进行分类。分析结果表明,其中一条馈线对大学CCP的电压畸变影响更大,给予补贴是一种更有效的缓解措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Harmonic Contribution Impacts in the Electric Grid Through Linear Regression, Artificial Neural Networks and Regression tree
This work shows the evaluation of the harmonic contribution at the common coupling point (CCP) of the electric network of the Federal University of Pará (UFPA), which connects four main feeders that have linear and nonlinear loads connected along them. In this article, emphasis is placed on the CCP with the local electric utility and the four electric power feeders of the campus, in order to evaluate the harmonic contribution of each feeder in the CCP of the university, using linear regression techniques and computational intelligences such as artificial neural networks and regression trees. The results of the three analyzes are compared to each other, in order to classify the feeders in relation to their respective impact on the campus electrical grid. The analysis results show that one of the feeders has a more significant impact on the voltage distortion at the CCP of the university, giving subsidies for a more efficient mitigating action.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信