Mohesen Alikhani, D. Khaburi, M. Khosravi, Hossein Afshari, José Raúl Rodríguez Rodríguez, C. Garcia
{"title":"高载波数和低控制复杂度的模块化多电平变换器PSC-PWM方案","authors":"Mohesen Alikhani, D. Khaburi, M. Khosravi, Hossein Afshari, José Raúl Rodríguez Rodríguez, C. Garcia","doi":"10.1109/PEDSTC53976.2022.9767395","DOIUrl":null,"url":null,"abstract":"The Modular Multilevel Converter (MMC) has been recently accepted as an advantageous choice for high-voltage applications. However, for extending this topology to higher voltages, the number of its submodules should be increased. On the other hand, using high-frequency carrier-based modulation schemes is very popular for voltage-source converters; since they provide improved output quality, and don’t involve complex calculations. When this strategy is employed for MMCs, the number of carriers would increase for more submodules, and the control complexity and required memory become more as result. Moreover, synchronizing several carriers is another issue. In this paper, a novel PSC-PWM scheme with low control complexity is proposed. The number of carriers employed in the designed scheme is always two, and independent of the submodule numbers. Despite this fact, the benefits of the conventional PSC-PWM, like the excellent harmonic content for different operating points, are completely remained. The performance of the proposed method is validated through conducting simulations in the MATLAB/Simulink environment.","PeriodicalId":213924,"journal":{"name":"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PSC-PWM Scheme for Modular Multilevel Converters with Highly-reduced Carrier Numbers and Low Control Complexity\",\"authors\":\"Mohesen Alikhani, D. Khaburi, M. Khosravi, Hossein Afshari, José Raúl Rodríguez Rodríguez, C. Garcia\",\"doi\":\"10.1109/PEDSTC53976.2022.9767395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Modular Multilevel Converter (MMC) has been recently accepted as an advantageous choice for high-voltage applications. However, for extending this topology to higher voltages, the number of its submodules should be increased. On the other hand, using high-frequency carrier-based modulation schemes is very popular for voltage-source converters; since they provide improved output quality, and don’t involve complex calculations. When this strategy is employed for MMCs, the number of carriers would increase for more submodules, and the control complexity and required memory become more as result. Moreover, synchronizing several carriers is another issue. In this paper, a novel PSC-PWM scheme with low control complexity is proposed. The number of carriers employed in the designed scheme is always two, and independent of the submodule numbers. Despite this fact, the benefits of the conventional PSC-PWM, like the excellent harmonic content for different operating points, are completely remained. The performance of the proposed method is validated through conducting simulations in the MATLAB/Simulink environment.\",\"PeriodicalId\":213924,\"journal\":{\"name\":\"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDSTC53976.2022.9767395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDSTC53976.2022.9767395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PSC-PWM Scheme for Modular Multilevel Converters with Highly-reduced Carrier Numbers and Low Control Complexity
The Modular Multilevel Converter (MMC) has been recently accepted as an advantageous choice for high-voltage applications. However, for extending this topology to higher voltages, the number of its submodules should be increased. On the other hand, using high-frequency carrier-based modulation schemes is very popular for voltage-source converters; since they provide improved output quality, and don’t involve complex calculations. When this strategy is employed for MMCs, the number of carriers would increase for more submodules, and the control complexity and required memory become more as result. Moreover, synchronizing several carriers is another issue. In this paper, a novel PSC-PWM scheme with low control complexity is proposed. The number of carriers employed in the designed scheme is always two, and independent of the submodule numbers. Despite this fact, the benefits of the conventional PSC-PWM, like the excellent harmonic content for different operating points, are completely remained. The performance of the proposed method is validated through conducting simulations in the MATLAB/Simulink environment.