{"title":"有向图是马努萨基猜想的哈密顿-A证明的一个新的充分条件","authors":"S. Darbinyan","doi":"10.23638/DMTCS-22-4-12","DOIUrl":null,"url":null,"abstract":"Y. Manoussakis (J. Graph Theory 16, 1992, 51-59) proposed the following conjecture. \n\\noindent\\textbf{Conjecture}. {\\it Let $D$ be a 2-strongly connected digraph of order $n$ such that for all distinct pairs of non-adjacent vertices $x$, $y$ and $w$, $z$, we have $d(x)+d(y)+d(w)+d(z)\\geq 4n-3$. Then $D$ is Hamiltonian.} \nIn this paper, we confirm this conjecture. Moreover, we prove that if a digraph $D$ satisfies the conditions of this conjecture and has a pair of non-adjacent vertices $\\{x,y\\}$ such that $d(x)+d(y)\\leq 2n-4$, then $D$ contains cycles of all lengths $3, 4, \\ldots , n$.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new sufficient condition for a Digraph to be Hamiltonian-A proof of Manoussakis Conjecture\",\"authors\":\"S. Darbinyan\",\"doi\":\"10.23638/DMTCS-22-4-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Y. Manoussakis (J. Graph Theory 16, 1992, 51-59) proposed the following conjecture. \\n\\\\noindent\\\\textbf{Conjecture}. {\\\\it Let $D$ be a 2-strongly connected digraph of order $n$ such that for all distinct pairs of non-adjacent vertices $x$, $y$ and $w$, $z$, we have $d(x)+d(y)+d(w)+d(z)\\\\geq 4n-3$. Then $D$ is Hamiltonian.} \\nIn this paper, we confirm this conjecture. Moreover, we prove that if a digraph $D$ satisfies the conditions of this conjecture and has a pair of non-adjacent vertices $\\\\{x,y\\\\}$ such that $d(x)+d(y)\\\\leq 2n-4$, then $D$ contains cycles of all lengths $3, 4, \\\\ldots , n$.\",\"PeriodicalId\":110830,\"journal\":{\"name\":\"Discret. Math. Theor. Comput. Sci.\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Math. Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23638/DMTCS-22-4-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23638/DMTCS-22-4-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
Y. Manoussakis (J. Graph Theory 16, 1992,51 -59)提出了以下猜想。\noindent\textbf{猜想}。{\it设$D$是一个二阶强连通有向图,其阶为$n$,使得对于所有不同的不相邻顶点对$x$, $y$和$w$, $z$,我们有$d(x)+d(y)+d(w)+d(z)\geq 4n-3$。那么$D$就是汉密尔顿函数。}在本文中,我们证实了这一猜想。此外,我们证明了如果一个有向图$D$满足这个猜想的条件并且有一对不相邻的顶点$\{x,y\}$使得$d(x)+d(y)\leq 2n-4$,那么$D$包含所有长度$3, 4, \ldots , n$的环。
A new sufficient condition for a Digraph to be Hamiltonian-A proof of Manoussakis Conjecture
Y. Manoussakis (J. Graph Theory 16, 1992, 51-59) proposed the following conjecture.
\noindent\textbf{Conjecture}. {\it Let $D$ be a 2-strongly connected digraph of order $n$ such that for all distinct pairs of non-adjacent vertices $x$, $y$ and $w$, $z$, we have $d(x)+d(y)+d(w)+d(z)\geq 4n-3$. Then $D$ is Hamiltonian.}
In this paper, we confirm this conjecture. Moreover, we prove that if a digraph $D$ satisfies the conditions of this conjecture and has a pair of non-adjacent vertices $\{x,y\}$ such that $d(x)+d(y)\leq 2n-4$, then $D$ contains cycles of all lengths $3, 4, \ldots , n$.