波兰煤矿事故预测模型

Marta Kraszewska, Nataliia Kashpruk, J. Baranowski, M. Kapusta
{"title":"波兰煤矿事故预测模型","authors":"Marta Kraszewska, Nataliia Kashpruk, J. Baranowski, M. Kapusta","doi":"10.1109/MMAR55195.2022.9874303","DOIUrl":null,"url":null,"abstract":"In paper, forecasting models using exponential smoothing for Polish coal mining safety accidents are presented. Prior to this, data is analyzed and approach for building forecasting models in Tableau is described in details. Three forecasting models are revealed, respectively for all accidents in coal mines, fatal accidents and employment. Received results are promising and confidence intervals cover the predictions well. Improved forecast accuracy with presented models might provide coal mine enterprises more precise data, supporting safety management in those organizations.","PeriodicalId":169528,"journal":{"name":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Forecasting models for Polish coal mining accidents\",\"authors\":\"Marta Kraszewska, Nataliia Kashpruk, J. Baranowski, M. Kapusta\",\"doi\":\"10.1109/MMAR55195.2022.9874303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In paper, forecasting models using exponential smoothing for Polish coal mining safety accidents are presented. Prior to this, data is analyzed and approach for building forecasting models in Tableau is described in details. Three forecasting models are revealed, respectively for all accidents in coal mines, fatal accidents and employment. Received results are promising and confidence intervals cover the predictions well. Improved forecast accuracy with presented models might provide coal mine enterprises more precise data, supporting safety management in those organizations.\",\"PeriodicalId\":169528,\"journal\":{\"name\":\"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR55195.2022.9874303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR55195.2022.9874303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文建立了波兰煤矿安全事故的指数平滑预测模型。在此之前,对数据进行了分析,并详细介绍了在Tableau中建立预测模型的方法。建立了煤矿全事故预测模型、致命事故预测模型和就业预测模型。收到的结果是有希望的,置信区间很好地覆盖了预测。提出的模型提高了预测精度,可以为煤矿企业提供更精确的数据,支持煤矿企业的安全管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting models for Polish coal mining accidents
In paper, forecasting models using exponential smoothing for Polish coal mining safety accidents are presented. Prior to this, data is analyzed and approach for building forecasting models in Tableau is described in details. Three forecasting models are revealed, respectively for all accidents in coal mines, fatal accidents and employment. Received results are promising and confidence intervals cover the predictions well. Improved forecast accuracy with presented models might provide coal mine enterprises more precise data, supporting safety management in those organizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信