牛顿对时间级数的推断和推断比较

Marinus Ignasius Jawawuan Lamabelawa
{"title":"牛顿对时间级数的推断和推断比较","authors":"Marinus Ignasius Jawawuan Lamabelawa","doi":"10.52972/hoaq.vol10no2.p73-80","DOIUrl":null,"url":null,"abstract":"For numerous purposes, time series data are analyzed to understand phenomena or behaviors of variables, and try to find future value. Interpolation is guessing time series data point between the range of data set. Extrapolation is predict or guessing time series data point from beyond the range of data set. \nIn this study, Newton’s Extrapolation is compared with linear and squared extrapolation. Newton’s  Extrapolation making the assumption that the observed trend continues for values of x outside the model range. \nThe robustness of prediction using Root Mean Square Error (RMSE) and Mean Average Percentage Error (MAPE). The results of newton’s interpolation with bottom, middle, and top approaches found the best value are middle approach, namely RMSE 76,01 and MAPE 4,65%.  In Newton’s Extrapolation, the error values are consistent at bottom, middle, and top approaches, namely RMSE 541,170 anda MAPE 33,19%. Based on data from the Statistics of Indonesia on the percentage and number of poor people in East Nusa Tenggara Province in 2010 -2018 is declining trend pattern. The error value with Linear, Quadratic, and Newton’s Extrapolation shows the robust value results at linear or trend extrapolation, namely RMSE 157,450 and MAPE 7,93%. These results indicate Newton's extrapolation works well on non-linear data and requires a combination method with  soft computing methods such as Fuzzy Systems, AG, or ANN","PeriodicalId":193691,"journal":{"name":"High Education of Organization Archive Quality: Jurnal Teknologi Informasi","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PERBANDINGAN INTERPOLASI DAN EKSTRAPOLASI NEWTON UNTUK PREDIKSIDATA TIME SERIES\",\"authors\":\"Marinus Ignasius Jawawuan Lamabelawa\",\"doi\":\"10.52972/hoaq.vol10no2.p73-80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For numerous purposes, time series data are analyzed to understand phenomena or behaviors of variables, and try to find future value. Interpolation is guessing time series data point between the range of data set. Extrapolation is predict or guessing time series data point from beyond the range of data set. \\nIn this study, Newton’s Extrapolation is compared with linear and squared extrapolation. Newton’s  Extrapolation making the assumption that the observed trend continues for values of x outside the model range. \\nThe robustness of prediction using Root Mean Square Error (RMSE) and Mean Average Percentage Error (MAPE). The results of newton’s interpolation with bottom, middle, and top approaches found the best value are middle approach, namely RMSE 76,01 and MAPE 4,65%.  In Newton’s Extrapolation, the error values are consistent at bottom, middle, and top approaches, namely RMSE 541,170 anda MAPE 33,19%. Based on data from the Statistics of Indonesia on the percentage and number of poor people in East Nusa Tenggara Province in 2010 -2018 is declining trend pattern. The error value with Linear, Quadratic, and Newton’s Extrapolation shows the robust value results at linear or trend extrapolation, namely RMSE 157,450 and MAPE 7,93%. These results indicate Newton's extrapolation works well on non-linear data and requires a combination method with  soft computing methods such as Fuzzy Systems, AG, or ANN\",\"PeriodicalId\":193691,\"journal\":{\"name\":\"High Education of Organization Archive Quality: Jurnal Teknologi Informasi\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Education of Organization Archive Quality: Jurnal Teknologi Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52972/hoaq.vol10no2.p73-80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Education of Organization Archive Quality: Jurnal Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52972/hoaq.vol10no2.p73-80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在很多情况下,分析时间序列数据是为了理解变量的现象或行为,并试图找到未来的价值。插值是猜测时间序列数据点之间的范围的数据集。外推法是从数据集范围之外预测或猜测时间序列数据点。本研究将牛顿外推法与线性外推法和平方外推法进行了比较。牛顿外推法假设在模型范围之外的x值观察到的趋势继续。使用均方根误差(RMSE)和平均百分比误差(MAPE)进行预测的稳健性。底部、中间和顶部三种方法的牛顿插值结果表明,最佳值为中间方法,即RMSE为76,01,MAPE为4,65%。在牛顿外推法中,底部、中间和顶部方法的误差值是一致的,即RMSE 541,170和MAPE 33,19%。根据印度尼西亚统计局的数据,2010 -2018年东努沙登加拉省贫困人口的百分比和人数呈下降趋势。线性外推、二次外推和牛顿外推的误差值显示线性或趋势外推的稳健值结果,即RMSE为157,450,MAPE为7,93%。这些结果表明,牛顿的外推法在非线性数据上效果很好,需要与模糊系统、AG或ANN等软计算方法相结合
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERBANDINGAN INTERPOLASI DAN EKSTRAPOLASI NEWTON UNTUK PREDIKSIDATA TIME SERIES
For numerous purposes, time series data are analyzed to understand phenomena or behaviors of variables, and try to find future value. Interpolation is guessing time series data point between the range of data set. Extrapolation is predict or guessing time series data point from beyond the range of data set. In this study, Newton’s Extrapolation is compared with linear and squared extrapolation. Newton’s  Extrapolation making the assumption that the observed trend continues for values of x outside the model range. The robustness of prediction using Root Mean Square Error (RMSE) and Mean Average Percentage Error (MAPE). The results of newton’s interpolation with bottom, middle, and top approaches found the best value are middle approach, namely RMSE 76,01 and MAPE 4,65%.  In Newton’s Extrapolation, the error values are consistent at bottom, middle, and top approaches, namely RMSE 541,170 anda MAPE 33,19%. Based on data from the Statistics of Indonesia on the percentage and number of poor people in East Nusa Tenggara Province in 2010 -2018 is declining trend pattern. The error value with Linear, Quadratic, and Newton’s Extrapolation shows the robust value results at linear or trend extrapolation, namely RMSE 157,450 and MAPE 7,93%. These results indicate Newton's extrapolation works well on non-linear data and requires a combination method with  soft computing methods such as Fuzzy Systems, AG, or ANN
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信