大型匿名游戏中的最佳回复动态

Y. Babichenko
{"title":"大型匿名游戏中的最佳回复动态","authors":"Y. Babichenko","doi":"10.2139/ssrn.2028522","DOIUrl":null,"url":null,"abstract":"We consider small-influence anonymous games with a large number of players $n$ where every player has two actions. For this class of games we present a best-reply dynamic with the following two properties. First, the dynamic reaches Nash approximate equilibria fast (in at most $cn\\ log n$ steps for some constant $c>0$). Second, Nash approximate equilibria are played by the dynamic with a limit frequency of at least $1-e^{-c'n}$ for some constant $c'>0$.","PeriodicalId":373527,"journal":{"name":"PSN: Game Theory (Topic)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Best-Reply Dynamics in Large Anonymous Games\",\"authors\":\"Y. Babichenko\",\"doi\":\"10.2139/ssrn.2028522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider small-influence anonymous games with a large number of players $n$ where every player has two actions. For this class of games we present a best-reply dynamic with the following two properties. First, the dynamic reaches Nash approximate equilibria fast (in at most $cn\\\\ log n$ steps for some constant $c>0$). Second, Nash approximate equilibria are played by the dynamic with a limit frequency of at least $1-e^{-c'n}$ for some constant $c'>0$.\",\"PeriodicalId\":373527,\"journal\":{\"name\":\"PSN: Game Theory (Topic)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Game Theory (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2028522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Game Theory (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2028522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是拥有大量玩家的小型匿名游戏,其中每个玩家都有两个行动。对于这类游戏,我们给出了具有以下两个属性的最佳回复动态。首先,动态达到纳什近似均衡很快(在$cn\ log n$步对于某些常数$c>0$)。其次,对于某常数c'>0$,动态系统的极限频率至少为$1-e^{-c'n}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Best-Reply Dynamics in Large Anonymous Games
We consider small-influence anonymous games with a large number of players $n$ where every player has two actions. For this class of games we present a best-reply dynamic with the following two properties. First, the dynamic reaches Nash approximate equilibria fast (in at most $cn\ log n$ steps for some constant $c>0$). Second, Nash approximate equilibria are played by the dynamic with a limit frequency of at least $1-e^{-c'n}$ for some constant $c'>0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信