ACCO:代数计算与比较

Xiaoqin Duan, Vipul Goyal, Hanjun Li, R. Ostrovsky, Antigoni Polychroniadou, Yifan Song
{"title":"ACCO:代数计算与比较","authors":"Xiaoqin Duan, Vipul Goyal, Hanjun Li, R. Ostrovsky, Antigoni Polychroniadou, Yifan Song","doi":"10.1145/3474123.3486757","DOIUrl":null,"url":null,"abstract":"We propose ACCO: the first maliciously secure multiparty computation engine in the honest majority setting, which also supports secure and efficient comparison and integer truncation. Our system is also the first to achieve information theoretic security. We use ACCO to build an information theoretic privacy preserving machine learning system where a set of parties collaboratively train regression models in the presence of a malicious adversary. We report an implementation of our system and compare the performance against Helen, the work of Zheng, Popa, Gonzalez and Stoica (SP'19) which provided multiparty regression models secure against malicious adversaries. Our system offers a significant speedup over Helen.","PeriodicalId":109533,"journal":{"name":"Proceedings of the 2021 on Cloud Computing Security Workshop","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ACCO: Algebraic Computation with Comparison\",\"authors\":\"Xiaoqin Duan, Vipul Goyal, Hanjun Li, R. Ostrovsky, Antigoni Polychroniadou, Yifan Song\",\"doi\":\"10.1145/3474123.3486757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose ACCO: the first maliciously secure multiparty computation engine in the honest majority setting, which also supports secure and efficient comparison and integer truncation. Our system is also the first to achieve information theoretic security. We use ACCO to build an information theoretic privacy preserving machine learning system where a set of parties collaboratively train regression models in the presence of a malicious adversary. We report an implementation of our system and compare the performance against Helen, the work of Zheng, Popa, Gonzalez and Stoica (SP'19) which provided multiparty regression models secure against malicious adversaries. Our system offers a significant speedup over Helen.\",\"PeriodicalId\":109533,\"journal\":{\"name\":\"Proceedings of the 2021 on Cloud Computing Security Workshop\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 on Cloud Computing Security Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474123.3486757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 on Cloud Computing Security Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474123.3486757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了ACCO:在诚实多数设置下的第一个恶意安全多方计算引擎,它还支持安全高效的比较和整数截断。本系统也是第一个实现信息理论安全的系统。我们使用ACCO构建了一个信息论隐私保护机器学习系统,其中一组各方在恶意对手存在的情况下协作训练回归模型。我们报告了我们系统的实现,并将其性能与Helen, Zheng, Popa, Gonzalez和Stoica (SP'19)的工作进行了比较,后者提供了针对恶意对手的多方回归模型。我们的系统比海伦的速度快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ACCO: Algebraic Computation with Comparison
We propose ACCO: the first maliciously secure multiparty computation engine in the honest majority setting, which also supports secure and efficient comparison and integer truncation. Our system is also the first to achieve information theoretic security. We use ACCO to build an information theoretic privacy preserving machine learning system where a set of parties collaboratively train regression models in the presence of a malicious adversary. We report an implementation of our system and compare the performance against Helen, the work of Zheng, Popa, Gonzalez and Stoica (SP'19) which provided multiparty regression models secure against malicious adversaries. Our system offers a significant speedup over Helen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信