块稀疏重构的加权双回溯匹配追踪

Liye Pei, H. Jiang, Ming Li
{"title":"块稀疏重构的加权双回溯匹配追踪","authors":"Liye Pei, H. Jiang, Ming Li","doi":"10.1049/iet-spr.2016.0036","DOIUrl":null,"url":null,"abstract":"This study presents a new method for the reconstruction of block-sparse signals with and without noisy perturbations, termed weighted double-backtracking matching pursuit (WDBMP). Unlike anterior block-sparse reconstruction algorithms, WDBMP requires no prior knowledge about block length and boundaries. It not only refines the current approximation based on energy, but also takes advantage of block structure to refine the chosen support set, and thus to improve the recovery performance. Moreover, the authors propose weighted proxy to select the candidates, which can increase the probability of selecting correct supports and improve the convergence speed. Experimental results show that the proposed algorithm owns better recovery quality and requires fewer iterations to converge compared with the existing block-sparse reconstruction algorithms without knowing the block-sparse boundaries.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Weighted double-backtracking matching pursuit for block-sparse reconstruction\",\"authors\":\"Liye Pei, H. Jiang, Ming Li\",\"doi\":\"10.1049/iet-spr.2016.0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a new method for the reconstruction of block-sparse signals with and without noisy perturbations, termed weighted double-backtracking matching pursuit (WDBMP). Unlike anterior block-sparse reconstruction algorithms, WDBMP requires no prior knowledge about block length and boundaries. It not only refines the current approximation based on energy, but also takes advantage of block structure to refine the chosen support set, and thus to improve the recovery performance. Moreover, the authors propose weighted proxy to select the candidates, which can increase the probability of selecting correct supports and improve the convergence speed. Experimental results show that the proposed algorithm owns better recovery quality and requires fewer iterations to converge compared with the existing block-sparse reconstruction algorithms without knowing the block-sparse boundaries.\",\"PeriodicalId\":272888,\"journal\":{\"name\":\"IET Signal Process.\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/iet-spr.2016.0036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2016.0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的块稀疏信号重建方法,即加权双回溯匹配追踪(WDBMP)。与之前的块稀疏重建算法不同,WDBMP不需要关于块长度和边界的先验知识。它不仅对当前基于能量的近似进行了改进,而且利用块结构对所选的支持集进行了改进,从而提高了恢复性能。此外,作者还提出了加权代理来选择候选项,提高了选择正确支持项的概率,提高了收敛速度。实验结果表明,与不知道块稀疏边界的现有块稀疏重建算法相比,该算法具有更好的恢复质量,收敛迭代次数更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted double-backtracking matching pursuit for block-sparse reconstruction
This study presents a new method for the reconstruction of block-sparse signals with and without noisy perturbations, termed weighted double-backtracking matching pursuit (WDBMP). Unlike anterior block-sparse reconstruction algorithms, WDBMP requires no prior knowledge about block length and boundaries. It not only refines the current approximation based on energy, but also takes advantage of block structure to refine the chosen support set, and thus to improve the recovery performance. Moreover, the authors propose weighted proxy to select the candidates, which can increase the probability of selecting correct supports and improve the convergence speed. Experimental results show that the proposed algorithm owns better recovery quality and requires fewer iterations to converge compared with the existing block-sparse reconstruction algorithms without knowing the block-sparse boundaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信