处理MAUP:基于空间和非空间方差的度量来确定适当的聚集尺度的方法

A. Comber, Paul Harris, Kristina Bratkova, H. H. Phe, M. Kieu, Quang Thanh Bui, Thi-Thuy-Nghiem Nguyen, Eric Wanjau, N. Malleson
{"title":"处理MAUP:基于空间和非空间方差的度量来确定适当的聚集尺度的方法","authors":"A. Comber, Paul Harris, Kristina Bratkova, H. H. Phe, M. Kieu, Quang Thanh Bui, Thi-Thuy-Nghiem Nguyen, Eric Wanjau, N. Malleson","doi":"10.5194/agile-giss-3-30-2022","DOIUrl":null,"url":null,"abstract":"Abstract. The Modifiable Areal Unit Problem or MAUP is frequently alluded to but rarely addressed directly. The MAUP posits that statistical distributions, relationships and trends can exhibit very different properties when the same data are aggregated or combined over different reporting units or scales. This paper explores a number of approaches for determining appropriate scales of spatial aggregation. It examines a travel survey, undertaken in Ha Noi, Vietnam, that captures attitudes towards a potential ban of motorised transport in the city centre. The data are rich, capturing travel destinations, purposes, modes and frequencies, as well as respondent demographics (age, occupation, housing etc) including home locations. The dataset is highly dimensional, with a large n (26339 records) and a large m (142 fields). When the raw individual level data are used to analyse the factors associated with travel ban attitudes, the resultant models are weak and inconclusive - the data are too noisy. Aggregating the data can overcome this, but this raises the question of appropriate aggregation scales. This paper demonstrates how aggregation scales can be evaluated using a range of different metrics related to spatial and non-spatial variances. In so doing it demonstrates how the MAUP can be directly addressed in analyses of spatial data.\n","PeriodicalId":116168,"journal":{"name":"AGILE: GIScience Series","volume":"418 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Handling the MAUP: methods for identifying appropriate scales of aggregation based on measures on spatial and non-spatial variance\",\"authors\":\"A. Comber, Paul Harris, Kristina Bratkova, H. H. Phe, M. Kieu, Quang Thanh Bui, Thi-Thuy-Nghiem Nguyen, Eric Wanjau, N. Malleson\",\"doi\":\"10.5194/agile-giss-3-30-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The Modifiable Areal Unit Problem or MAUP is frequently alluded to but rarely addressed directly. The MAUP posits that statistical distributions, relationships and trends can exhibit very different properties when the same data are aggregated or combined over different reporting units or scales. This paper explores a number of approaches for determining appropriate scales of spatial aggregation. It examines a travel survey, undertaken in Ha Noi, Vietnam, that captures attitudes towards a potential ban of motorised transport in the city centre. The data are rich, capturing travel destinations, purposes, modes and frequencies, as well as respondent demographics (age, occupation, housing etc) including home locations. The dataset is highly dimensional, with a large n (26339 records) and a large m (142 fields). When the raw individual level data are used to analyse the factors associated with travel ban attitudes, the resultant models are weak and inconclusive - the data are too noisy. Aggregating the data can overcome this, but this raises the question of appropriate aggregation scales. This paper demonstrates how aggregation scales can be evaluated using a range of different metrics related to spatial and non-spatial variances. In so doing it demonstrates how the MAUP can be directly addressed in analyses of spatial data.\\n\",\"PeriodicalId\":116168,\"journal\":{\"name\":\"AGILE: GIScience Series\",\"volume\":\"418 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGILE: GIScience Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/agile-giss-3-30-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGILE: GIScience Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/agile-giss-3-30-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要可修改面积单位问题(MAUP)经常被提及,但很少直接解决。MAUP假定,当在不同的报告单位或尺度上汇总或组合相同的数据时,统计分布、关系和趋势可能表现出非常不同的属性。本文探讨了确定空间聚集尺度的几种方法。它研究了在越南河内进行的一项旅行调查,该调查捕捉了人们对市中心可能禁止机动交通的态度。数据丰富,包括旅游目的地、目的、模式和频率,以及受访者的人口统计数据(年龄、职业、住房等),包括家庭所在地。数据集是高维的,有很大的n(26339条记录)和很大的m(142个字段)。当使用原始的个人层面数据来分析与旅行禁令态度有关的因素时,所得到的模型是薄弱和不确定的——数据噪声太大。汇总数据可以克服这个问题,但这就提出了适当的汇总规模的问题。本文演示了如何使用与空间和非空间方差相关的一系列不同度量来评估聚合尺度。通过这样做,它展示了如何在空间数据分析中直接解决MAUP问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handling the MAUP: methods for identifying appropriate scales of aggregation based on measures on spatial and non-spatial variance
Abstract. The Modifiable Areal Unit Problem or MAUP is frequently alluded to but rarely addressed directly. The MAUP posits that statistical distributions, relationships and trends can exhibit very different properties when the same data are aggregated or combined over different reporting units or scales. This paper explores a number of approaches for determining appropriate scales of spatial aggregation. It examines a travel survey, undertaken in Ha Noi, Vietnam, that captures attitudes towards a potential ban of motorised transport in the city centre. The data are rich, capturing travel destinations, purposes, modes and frequencies, as well as respondent demographics (age, occupation, housing etc) including home locations. The dataset is highly dimensional, with a large n (26339 records) and a large m (142 fields). When the raw individual level data are used to analyse the factors associated with travel ban attitudes, the resultant models are weak and inconclusive - the data are too noisy. Aggregating the data can overcome this, but this raises the question of appropriate aggregation scales. This paper demonstrates how aggregation scales can be evaluated using a range of different metrics related to spatial and non-spatial variances. In so doing it demonstrates how the MAUP can be directly addressed in analyses of spatial data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信