离散环签名与马尔可夫环拓扑

Y. Jan
{"title":"离散环签名与马尔可夫环拓扑","authors":"Y. Jan","doi":"10.4171/rmi/1262","DOIUrl":null,"url":null,"abstract":"Our purpose is to explore, in the context of loop ensembles on finite graphs, the relations between combinatorial group theory, loops topology, loop measures, and signatures of discrete paths. We determine the distributions of the loop homotopy class, and of the first and second homologies, defined by the lower central series of the fundamental group. This last result has yet to be extended to higher order homologies.","PeriodicalId":239929,"journal":{"name":"Revista Matemática Iberoamericana","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On discrete loop signatures and Markov loops topology\",\"authors\":\"Y. Jan\",\"doi\":\"10.4171/rmi/1262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our purpose is to explore, in the context of loop ensembles on finite graphs, the relations between combinatorial group theory, loops topology, loop measures, and signatures of discrete paths. We determine the distributions of the loop homotopy class, and of the first and second homologies, defined by the lower central series of the fundamental group. This last result has yet to be extended to higher order homologies.\",\"PeriodicalId\":239929,\"journal\":{\"name\":\"Revista Matemática Iberoamericana\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matemática Iberoamericana\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matemática Iberoamericana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rmi/1262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的目的是探讨在有限图上的环系的背景下,组合群论、环拓扑、环测度和离散路径的特征之间的关系。我们确定了环同伦类的分布,以及由基群的下中心级数定义的第一同伦和第二同伦的分布。最后的结果还有待推广到高阶同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On discrete loop signatures and Markov loops topology
Our purpose is to explore, in the context of loop ensembles on finite graphs, the relations between combinatorial group theory, loops topology, loop measures, and signatures of discrete paths. We determine the distributions of the loop homotopy class, and of the first and second homologies, defined by the lower central series of the fundamental group. This last result has yet to be extended to higher order homologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信