一个用于复杂事件处理和机器学习的开放体系结构

Nhan Nathan Tri Luong, Z. Milosevic, A. Berry, F. Rabhi
{"title":"一个用于复杂事件处理和机器学习的开放体系结构","authors":"Nhan Nathan Tri Luong, Z. Milosevic, A. Berry, F. Rabhi","doi":"10.1109/EDOC49727.2020.00016","DOIUrl":null,"url":null,"abstract":"This paper proposes an advanced, open architecture to augment streaming data platforms with both complex event processing (CEP) and predictive machine learning models. We leverage the power of CEP to preprocess streams using sophisticated event pattern expressions then present these preprocessed streams for downstream training and predictive computations. We demonstrate this approach using specific technology components.","PeriodicalId":409420,"journal":{"name":"2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An open architecture for complex event processing with machine learning\",\"authors\":\"Nhan Nathan Tri Luong, Z. Milosevic, A. Berry, F. Rabhi\",\"doi\":\"10.1109/EDOC49727.2020.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an advanced, open architecture to augment streaming data platforms with both complex event processing (CEP) and predictive machine learning models. We leverage the power of CEP to preprocess streams using sophisticated event pattern expressions then present these preprocessed streams for downstream training and predictive computations. We demonstrate this approach using specific technology components.\",\"PeriodicalId\":409420,\"journal\":{\"name\":\"2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDOC49727.2020.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDOC49727.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种先进的开放式架构,通过复杂事件处理(CEP)和预测机器学习模型来增强流数据平台。我们利用CEP的强大功能,使用复杂的事件模式表达式预处理流,然后将这些预处理流呈现给下游训练和预测计算。我们使用特定的技术组件来演示这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An open architecture for complex event processing with machine learning
This paper proposes an advanced, open architecture to augment streaming data platforms with both complex event processing (CEP) and predictive machine learning models. We leverage the power of CEP to preprocess streams using sophisticated event pattern expressions then present these preprocessed streams for downstream training and predictive computations. We demonstrate this approach using specific technology components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信