基于马氏距离的多准则聚类推荐

Mohammed Wasid, R. Ali
{"title":"基于马氏距离的多准则聚类推荐","authors":"Mohammed Wasid, R. Ali","doi":"10.1504/ijris.2020.10028336","DOIUrl":null,"url":null,"abstract":"There have been significant advances made in the research of recommender systems over the past decades and have been implemented in both industry and academia. Recently, multi-criteria ratings are being incorporated into traditional recommender systems to further improve their quality, especially to handle the data sparsity and cold start issues. However, incorporation of multi-criteria ratings have improved the performance of the recommendation, but at the same time, multi-dimensionality issue also arises. This paper presents a clustering-based recommendation approach which is used for dealing with the multi-dimensionality issue in multi-criteria recommender systems. Here, we cluster the users based on their individual criteria ratings using K-means clustering and the intra-cluster similarity is computed using Mahalanobis distance measure for neighbourhood set generation. This improves the recommendations quality and predictive accuracy of both traditional and clusteringbased collaborative recommendations. The Yahoo! Movies dataset was used for testing the approach and the experiment conducted shows promising results.","PeriodicalId":360794,"journal":{"name":"Int. J. Reason. based Intell. Syst.","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multi-criteria clustering-based recommendation using Mahalanobis distance\",\"authors\":\"Mohammed Wasid, R. Ali\",\"doi\":\"10.1504/ijris.2020.10028336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There have been significant advances made in the research of recommender systems over the past decades and have been implemented in both industry and academia. Recently, multi-criteria ratings are being incorporated into traditional recommender systems to further improve their quality, especially to handle the data sparsity and cold start issues. However, incorporation of multi-criteria ratings have improved the performance of the recommendation, but at the same time, multi-dimensionality issue also arises. This paper presents a clustering-based recommendation approach which is used for dealing with the multi-dimensionality issue in multi-criteria recommender systems. Here, we cluster the users based on their individual criteria ratings using K-means clustering and the intra-cluster similarity is computed using Mahalanobis distance measure for neighbourhood set generation. This improves the recommendations quality and predictive accuracy of both traditional and clusteringbased collaborative recommendations. The Yahoo! Movies dataset was used for testing the approach and the experiment conducted shows promising results.\",\"PeriodicalId\":360794,\"journal\":{\"name\":\"Int. J. Reason. based Intell. Syst.\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Reason. based Intell. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijris.2020.10028336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Reason. based Intell. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijris.2020.10028336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在过去的几十年里,推荐系统的研究取得了重大进展,并在工业界和学术界都得到了应用。近年来,为了进一步提高传统推荐系统的质量,特别是在处理数据稀疏性和冷启动问题方面,多标准评级被引入到传统推荐系统中。然而,多标准评级的引入提高了推荐的性能,但同时也产生了多维度问题。本文提出了一种基于聚类的推荐方法,用于处理多标准推荐系统中的多维问题。在这里,我们使用K-means聚类方法根据用户的个人标准评级对其进行聚类,并使用Mahalanobis距离度量方法计算聚类内相似性以生成邻域集。这提高了传统和基于聚类的协作推荐的推荐质量和预测准确性。Yahoo !利用电影数据集对该方法进行了测试,实验结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-criteria clustering-based recommendation using Mahalanobis distance
There have been significant advances made in the research of recommender systems over the past decades and have been implemented in both industry and academia. Recently, multi-criteria ratings are being incorporated into traditional recommender systems to further improve their quality, especially to handle the data sparsity and cold start issues. However, incorporation of multi-criteria ratings have improved the performance of the recommendation, but at the same time, multi-dimensionality issue also arises. This paper presents a clustering-based recommendation approach which is used for dealing with the multi-dimensionality issue in multi-criteria recommender systems. Here, we cluster the users based on their individual criteria ratings using K-means clustering and the intra-cluster similarity is computed using Mahalanobis distance measure for neighbourhood set generation. This improves the recommendations quality and predictive accuracy of both traditional and clusteringbased collaborative recommendations. The Yahoo! Movies dataset was used for testing the approach and the experiment conducted shows promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信