EUVL中同时耀斑电平和耀斑变化的最小化

Shao-Yun Fang, Yao-Wen Chang
{"title":"EUVL中同时耀斑电平和耀斑变化的最小化","authors":"Shao-Yun Fang, Yao-Wen Chang","doi":"10.1145/2228360.2228578","DOIUrl":null,"url":null,"abstract":"Extreme Ultraviolet Lithography (EUVL) is one of the most promising Next Generation Lithography (NGL) technologies. Due to the surface roughness of the optical system used in EUVL, the rather high level of flare (i.e., scattered light) becomes one of the most critical issues in EUVL. In addition, the layout density non-uniformity and the flare periphery effect (the flare distribution at the periphery is much different from that in the center of a chip) also induce a large flare variation within a layout. Both of the high flare level and the large flare variation could worsen the control of critical dimension (CD) uniformity. Dummification (i.e., tiling or dummy fill) is one of the flare compensation strategies to reduce the flare level and the flare variation for the process with a clear-field mask in EUVL. However, existing dummy fill algorithms for Chemical-Mechanical Polishing (CMP) are not adequate for the flare mitigation problem in EUVL due to the flare periphery effect. This paper presents the first work that solves the flare mitigation problem in EUVL with a specific dummification algorithm flow considering global flare distribution. The dummification process is guided by dummy demand maps, which are generated by using a quasi-inverse lithography technique. In addition, an error-controlled fast flare map computation technique is proposed and integrated into our algorithm to further improve the efficiency without loss of computation accuracy. Experimental results show that our flow can effectively and efficiently reduce the flare level and the flare variation, which may contribute to the better control of CD uniformity.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Simultaneous flare level and flare variation minimization with dummification in EUVL\",\"authors\":\"Shao-Yun Fang, Yao-Wen Chang\",\"doi\":\"10.1145/2228360.2228578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme Ultraviolet Lithography (EUVL) is one of the most promising Next Generation Lithography (NGL) technologies. Due to the surface roughness of the optical system used in EUVL, the rather high level of flare (i.e., scattered light) becomes one of the most critical issues in EUVL. In addition, the layout density non-uniformity and the flare periphery effect (the flare distribution at the periphery is much different from that in the center of a chip) also induce a large flare variation within a layout. Both of the high flare level and the large flare variation could worsen the control of critical dimension (CD) uniformity. Dummification (i.e., tiling or dummy fill) is one of the flare compensation strategies to reduce the flare level and the flare variation for the process with a clear-field mask in EUVL. However, existing dummy fill algorithms for Chemical-Mechanical Polishing (CMP) are not adequate for the flare mitigation problem in EUVL due to the flare periphery effect. This paper presents the first work that solves the flare mitigation problem in EUVL with a specific dummification algorithm flow considering global flare distribution. The dummification process is guided by dummy demand maps, which are generated by using a quasi-inverse lithography technique. In addition, an error-controlled fast flare map computation technique is proposed and integrated into our algorithm to further improve the efficiency without loss of computation accuracy. Experimental results show that our flow can effectively and efficiently reduce the flare level and the flare variation, which may contribute to the better control of CD uniformity.\",\"PeriodicalId\":263599,\"journal\":{\"name\":\"DAC Design Automation Conference 2012\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAC Design Automation Conference 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2228360.2228578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

极紫外光刻技术(EUVL)是下一代光刻技术(NGL)中最有前途的技术之一。由于EUVL使用的光学系统表面粗糙,相当高的耀斑(即散射光)成为EUVL中最关键的问题之一。此外,布局密度的不均匀性和耀斑外围效应(耀斑在外围的分布与芯片中心的分布有很大的不同)也会导致布局内耀斑的大变化。高耀斑水平和大耀斑变化都会使临界尺寸均匀性控制恶化。虚化(即平铺或虚化填充)是EUVL清场掩模过程中降低耀斑水平和耀斑变化的一种耀斑补偿策略。然而,现有的化学机械抛光(CMP)虚拟填充算法由于耀斑外围效应的存在,不能很好地解决EUVL中的耀斑缓解问题。本文首次提出了一种考虑全局耀斑分布的特定伪化算法流程来解决EUVL中的耀斑缓解问题。伪化过程由伪需求图指导,该虚拟需求图由准逆光刻技术生成。此外,提出了一种误差控制的耀斑图快速计算技术,并将其集成到算法中,在不损失计算精度的情况下进一步提高了计算效率。实验结果表明,该方法可以有效地降低耀斑水平和耀斑变化,从而更好地控制CD均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous flare level and flare variation minimization with dummification in EUVL
Extreme Ultraviolet Lithography (EUVL) is one of the most promising Next Generation Lithography (NGL) technologies. Due to the surface roughness of the optical system used in EUVL, the rather high level of flare (i.e., scattered light) becomes one of the most critical issues in EUVL. In addition, the layout density non-uniformity and the flare periphery effect (the flare distribution at the periphery is much different from that in the center of a chip) also induce a large flare variation within a layout. Both of the high flare level and the large flare variation could worsen the control of critical dimension (CD) uniformity. Dummification (i.e., tiling or dummy fill) is one of the flare compensation strategies to reduce the flare level and the flare variation for the process with a clear-field mask in EUVL. However, existing dummy fill algorithms for Chemical-Mechanical Polishing (CMP) are not adequate for the flare mitigation problem in EUVL due to the flare periphery effect. This paper presents the first work that solves the flare mitigation problem in EUVL with a specific dummification algorithm flow considering global flare distribution. The dummification process is guided by dummy demand maps, which are generated by using a quasi-inverse lithography technique. In addition, an error-controlled fast flare map computation technique is proposed and integrated into our algorithm to further improve the efficiency without loss of computation accuracy. Experimental results show that our flow can effectively and efficiently reduce the flare level and the flare variation, which may contribute to the better control of CD uniformity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信