并行系统价值预测的理论框架

Shaoshan Liu, C. Eisenbeis, J. Gaudiot
{"title":"并行系统价值预测的理论框架","authors":"Shaoshan Liu, C. Eisenbeis, J. Gaudiot","doi":"10.1109/ICPP.2010.10","DOIUrl":null,"url":null,"abstract":"We present here a theoretical framework towards a fundamental understanding of the effects of value prediction. Our framework consists of two parts: first, an identification of the theoretical limit of value prediction and an indication of the potential to improve parallelism through the exploitation of value predictability; second, a demonstration of the feasibility of data prediction and a theoretical support to verify this feasibility. The experiment results demonstrate the immense potential of value prediction in enhancing the performance of many-core architectures.","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Theoretical Framework for Value Prediction in Parallel Systems\",\"authors\":\"Shaoshan Liu, C. Eisenbeis, J. Gaudiot\",\"doi\":\"10.1109/ICPP.2010.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present here a theoretical framework towards a fundamental understanding of the effects of value prediction. Our framework consists of two parts: first, an identification of the theoretical limit of value prediction and an indication of the potential to improve parallelism through the exploitation of value predictability; second, a demonstration of the feasibility of data prediction and a theoretical support to verify this feasibility. The experiment results demonstrate the immense potential of value prediction in enhancing the performance of many-core architectures.\",\"PeriodicalId\":180554,\"journal\":{\"name\":\"2010 39th International Conference on Parallel Processing\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 39th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2010.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们在这里提出了一个理论框架,以基本理解价值预测的影响。我们的框架由两部分组成:首先,确定价值预测的理论极限,并指出通过利用价值可预测性来提高并行性的潜力;其次,对数据预测的可行性进行论证,并为验证这一可行性提供理论支持。实验结果表明,值预测在提高多核架构的性能方面具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Theoretical Framework for Value Prediction in Parallel Systems
We present here a theoretical framework towards a fundamental understanding of the effects of value prediction. Our framework consists of two parts: first, an identification of the theoretical limit of value prediction and an indication of the potential to improve parallelism through the exploitation of value predictability; second, a demonstration of the feasibility of data prediction and a theoretical support to verify this feasibility. The experiment results demonstrate the immense potential of value prediction in enhancing the performance of many-core architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信