关于黎曼假设的Vasyunin余切和

Samir Belhadj, M. Goubi
{"title":"关于黎曼假设的Vasyunin余切和","authors":"Samir Belhadj, M. Goubi","doi":"10.37394/23206.2020.19.74","DOIUrl":null,"url":null,"abstract":"Abstract: In this work, we are interested by Vasyunin cotangent-sum V (p/q) encountered in computation of the inner product arising in the Baez-Duarte-Balazard criterion for Riemann hypothesis. By hint of generating functions theory and introduction of double Euclidean algorithm, we give series expansions of V (p/q) and the symmetric sum S (p, q) = V (p/q)+V (q/p) . These calculus permit to deduce another reformulation of Vasyunin formula. This study is a complement of the recent work of M. Goubi concerning special case V (1/q).","PeriodicalId":112268,"journal":{"name":"WSEAS Transactions on Mathematics archive","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Vasyunin Cotangent sums related to Riemann Hypothesis\",\"authors\":\"Samir Belhadj, M. Goubi\",\"doi\":\"10.37394/23206.2020.19.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: In this work, we are interested by Vasyunin cotangent-sum V (p/q) encountered in computation of the inner product arising in the Baez-Duarte-Balazard criterion for Riemann hypothesis. By hint of generating functions theory and introduction of double Euclidean algorithm, we give series expansions of V (p/q) and the symmetric sum S (p, q) = V (p/q)+V (q/p) . These calculus permit to deduce another reformulation of Vasyunin formula. This study is a complement of the recent work of M. Goubi concerning special case V (1/q).\",\"PeriodicalId\":112268,\"journal\":{\"name\":\"WSEAS Transactions on Mathematics archive\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Mathematics archive\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23206.2020.19.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Mathematics archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23206.2020.19.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:在本文中,我们对黎曼假设的Baez-Duarte-Balazard准则中计算内积时遇到的Vasyunin共切和V (p/q)感兴趣。利用生成函数理论的提示和二重欧几里得算法的引入,给出了V (p/q)的级数展开式和对称和S (p, q) = V (p/q)+V (q/p)。这些演算可以推导出瓦苏宁公式的另一种重新表述。本研究是对最近Goubi先生关于特例V (1/q)的研究的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Vasyunin Cotangent sums related to Riemann Hypothesis
Abstract: In this work, we are interested by Vasyunin cotangent-sum V (p/q) encountered in computation of the inner product arising in the Baez-Duarte-Balazard criterion for Riemann hypothesis. By hint of generating functions theory and introduction of double Euclidean algorithm, we give series expansions of V (p/q) and the symmetric sum S (p, q) = V (p/q)+V (q/p) . These calculus permit to deduce another reformulation of Vasyunin formula. This study is a complement of the recent work of M. Goubi concerning special case V (1/q).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信