融合任意形状文本边缘语义的文本检测

Ziping Gao, B. Peng, Tianrui Li
{"title":"融合任意形状文本边缘语义的文本检测","authors":"Ziping Gao, B. Peng, Tianrui Li","doi":"10.1109/ISKE47853.2019.9170424","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method of fusing text edge semantics (FTES) for text semantic segmentation. FTES divides an image containing text into text semantic region, edge semantic region and background semantic region, where edge region is as a transitional region that splits text region from background region. At the same time, we design a text semantics segmentation network FTES-Net to detect arbitrarily shaped text regions in an images. We perform experiments on two public datasets containing a large number of non-linear text regions, and the results show that our proposed text region detection method can achieve comparable results.","PeriodicalId":399084,"journal":{"name":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"343 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Text Detection by Fusing Text Edge Semantics in Arbitrary Shapes\",\"authors\":\"Ziping Gao, B. Peng, Tianrui Li\",\"doi\":\"10.1109/ISKE47853.2019.9170424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method of fusing text edge semantics (FTES) for text semantic segmentation. FTES divides an image containing text into text semantic region, edge semantic region and background semantic region, where edge region is as a transitional region that splits text region from background region. At the same time, we design a text semantics segmentation network FTES-Net to detect arbitrarily shaped text regions in an images. We perform experiments on two public datasets containing a large number of non-linear text regions, and the results show that our proposed text region detection method can achieve comparable results.\",\"PeriodicalId\":399084,\"journal\":{\"name\":\"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"343 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE47853.2019.9170424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE47853.2019.9170424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种融合文本边缘语义(FTES)的文本语义分割方法。FTES将包含文本的图像分为文本语义区域、边缘语义区域和背景语义区域,其中边缘区域作为过渡区域,将文本区域与背景区域分开。同时,我们设计了一个文本语义分割网络FTES-Net来检测图像中任意形状的文本区域。我们在两个包含大量非线性文本区域的公共数据集上进行了实验,结果表明我们提出的文本区域检测方法可以达到可比较的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Detection by Fusing Text Edge Semantics in Arbitrary Shapes
In this paper, we propose a method of fusing text edge semantics (FTES) for text semantic segmentation. FTES divides an image containing text into text semantic region, edge semantic region and background semantic region, where edge region is as a transitional region that splits text region from background region. At the same time, we design a text semantics segmentation network FTES-Net to detect arbitrarily shaped text regions in an images. We perform experiments on two public datasets containing a large number of non-linear text regions, and the results show that our proposed text region detection method can achieve comparable results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信