加速MATLAB图像处理工具箱在gpu上的功能

GPGPU-3 Pub Date : 2010-03-14 DOI:10.1145/1735688.1735703
J. Kong, Martin Dimitrov, Yi Yang, J. Liyanage, Lin Cao, Jacob Staples, Mike Mantor, Huiyang Zhou
{"title":"加速MATLAB图像处理工具箱在gpu上的功能","authors":"J. Kong, Martin Dimitrov, Yi Yang, J. Liyanage, Lin Cao, Jacob Staples, Mike Mantor, Huiyang Zhou","doi":"10.1145/1735688.1735703","DOIUrl":null,"url":null,"abstract":"In this paper, we present our effort in developing an open-source GPU (graphics processing units) code library for the MATLAB Image Processing Toolbox (IPT). We ported a dozen of representative functions from IPT and based on their inherent characteristics, we grouped these functions into four categories: data independent, data sharing, algorithm dependent and data dependent. For each category, we present a detailed case study, which reveals interesting insights on how to efficiently optimize the code for GPUs and highlight performance-critical hardware features, some of which have not been well explored in existing literature. Our results show drastic speedups for the functions in the data-independent or data-sharing category by leveraging hardware support judiciously; and moderate speedups for those in the algorithm-dependent category by careful algorithm selection and parallelization. For the functions in the last category, fine-grain synchronization and data-dependency requirements are the main obstacles to an efficient implementation on GPUs.","PeriodicalId":381071,"journal":{"name":"GPGPU-3","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Accelerating MATLAB Image Processing Toolbox functions on GPUs\",\"authors\":\"J. Kong, Martin Dimitrov, Yi Yang, J. Liyanage, Lin Cao, Jacob Staples, Mike Mantor, Huiyang Zhou\",\"doi\":\"10.1145/1735688.1735703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present our effort in developing an open-source GPU (graphics processing units) code library for the MATLAB Image Processing Toolbox (IPT). We ported a dozen of representative functions from IPT and based on their inherent characteristics, we grouped these functions into four categories: data independent, data sharing, algorithm dependent and data dependent. For each category, we present a detailed case study, which reveals interesting insights on how to efficiently optimize the code for GPUs and highlight performance-critical hardware features, some of which have not been well explored in existing literature. Our results show drastic speedups for the functions in the data-independent or data-sharing category by leveraging hardware support judiciously; and moderate speedups for those in the algorithm-dependent category by careful algorithm selection and parallelization. For the functions in the last category, fine-grain synchronization and data-dependency requirements are the main obstacles to an efficient implementation on GPUs.\",\"PeriodicalId\":381071,\"journal\":{\"name\":\"GPGPU-3\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GPGPU-3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1735688.1735703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GPGPU-3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1735688.1735703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

在本文中,我们介绍了我们为MATLAB图像处理工具箱(IPT)开发开源GPU(图形处理单元)代码库的努力。我们从IPT中移植了十几个具有代表性的函数,并根据它们的固有特征将这些函数分为四类:数据独立、数据共享、算法依赖和数据依赖。对于每个类别,我们都提供了一个详细的案例研究,揭示了如何有效地优化gpu代码和突出性能关键硬件特性的有趣见解,其中一些在现有文献中尚未得到很好的探讨。我们的结果表明,通过明智地利用硬件支持,数据独立或数据共享类别中的功能有了显著的加速;通过仔细的算法选择和并行化,对那些依赖算法的类别有适度的加速。对于最后一类函数,细粒度同步和数据依赖需求是在gpu上有效实现的主要障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating MATLAB Image Processing Toolbox functions on GPUs
In this paper, we present our effort in developing an open-source GPU (graphics processing units) code library for the MATLAB Image Processing Toolbox (IPT). We ported a dozen of representative functions from IPT and based on their inherent characteristics, we grouped these functions into four categories: data independent, data sharing, algorithm dependent and data dependent. For each category, we present a detailed case study, which reveals interesting insights on how to efficiently optimize the code for GPUs and highlight performance-critical hardware features, some of which have not been well explored in existing literature. Our results show drastic speedups for the functions in the data-independent or data-sharing category by leveraging hardware support judiciously; and moderate speedups for those in the algorithm-dependent category by careful algorithm selection and parallelization. For the functions in the last category, fine-grain synchronization and data-dependency requirements are the main obstacles to an efficient implementation on GPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信