J. Kong, Martin Dimitrov, Yi Yang, J. Liyanage, Lin Cao, Jacob Staples, Mike Mantor, Huiyang Zhou
{"title":"加速MATLAB图像处理工具箱在gpu上的功能","authors":"J. Kong, Martin Dimitrov, Yi Yang, J. Liyanage, Lin Cao, Jacob Staples, Mike Mantor, Huiyang Zhou","doi":"10.1145/1735688.1735703","DOIUrl":null,"url":null,"abstract":"In this paper, we present our effort in developing an open-source GPU (graphics processing units) code library for the MATLAB Image Processing Toolbox (IPT). We ported a dozen of representative functions from IPT and based on their inherent characteristics, we grouped these functions into four categories: data independent, data sharing, algorithm dependent and data dependent. For each category, we present a detailed case study, which reveals interesting insights on how to efficiently optimize the code for GPUs and highlight performance-critical hardware features, some of which have not been well explored in existing literature. Our results show drastic speedups for the functions in the data-independent or data-sharing category by leveraging hardware support judiciously; and moderate speedups for those in the algorithm-dependent category by careful algorithm selection and parallelization. For the functions in the last category, fine-grain synchronization and data-dependency requirements are the main obstacles to an efficient implementation on GPUs.","PeriodicalId":381071,"journal":{"name":"GPGPU-3","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Accelerating MATLAB Image Processing Toolbox functions on GPUs\",\"authors\":\"J. Kong, Martin Dimitrov, Yi Yang, J. Liyanage, Lin Cao, Jacob Staples, Mike Mantor, Huiyang Zhou\",\"doi\":\"10.1145/1735688.1735703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present our effort in developing an open-source GPU (graphics processing units) code library for the MATLAB Image Processing Toolbox (IPT). We ported a dozen of representative functions from IPT and based on their inherent characteristics, we grouped these functions into four categories: data independent, data sharing, algorithm dependent and data dependent. For each category, we present a detailed case study, which reveals interesting insights on how to efficiently optimize the code for GPUs and highlight performance-critical hardware features, some of which have not been well explored in existing literature. Our results show drastic speedups for the functions in the data-independent or data-sharing category by leveraging hardware support judiciously; and moderate speedups for those in the algorithm-dependent category by careful algorithm selection and parallelization. For the functions in the last category, fine-grain synchronization and data-dependency requirements are the main obstacles to an efficient implementation on GPUs.\",\"PeriodicalId\":381071,\"journal\":{\"name\":\"GPGPU-3\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GPGPU-3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1735688.1735703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GPGPU-3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1735688.1735703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accelerating MATLAB Image Processing Toolbox functions on GPUs
In this paper, we present our effort in developing an open-source GPU (graphics processing units) code library for the MATLAB Image Processing Toolbox (IPT). We ported a dozen of representative functions from IPT and based on their inherent characteristics, we grouped these functions into four categories: data independent, data sharing, algorithm dependent and data dependent. For each category, we present a detailed case study, which reveals interesting insights on how to efficiently optimize the code for GPUs and highlight performance-critical hardware features, some of which have not been well explored in existing literature. Our results show drastic speedups for the functions in the data-independent or data-sharing category by leveraging hardware support judiciously; and moderate speedups for those in the algorithm-dependent category by careful algorithm selection and parallelization. For the functions in the last category, fine-grain synchronization and data-dependency requirements are the main obstacles to an efficient implementation on GPUs.