具有不可观测异质性的二元面板数据的动态模型承认根n一致条件估计

F. Bartolucci, V. Nigro
{"title":"具有不可观测异质性的二元面板数据的动态模型承认根n一致条件估计","authors":"F. Bartolucci, V. Nigro","doi":"10.2139/ssrn.967389","DOIUrl":null,"url":null,"abstract":"A model for binary panel data is introduced which allows for state dependence and unobserved heterogeneity beyond the effect of available covariates. The model is of quadratic exponential type and its structure closely resembles that of the dynamic logit model. However, it has the advantage of being easily estimable via conditional likelihood with at least two observations (further to an initial observation) and even in the presence of time dummies among the regressors. Copyright 2010 The Econometric Society.","PeriodicalId":416571,"journal":{"name":"CEIS: Centre for Economic & International Studies Working Paper Series","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"A Dynamic Model for Binary Panel Data With Unobserved Heterogeneity Admitting a Root-N Consistent Conditional Estimator\",\"authors\":\"F. Bartolucci, V. Nigro\",\"doi\":\"10.2139/ssrn.967389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model for binary panel data is introduced which allows for state dependence and unobserved heterogeneity beyond the effect of available covariates. The model is of quadratic exponential type and its structure closely resembles that of the dynamic logit model. However, it has the advantage of being easily estimable via conditional likelihood with at least two observations (further to an initial observation) and even in the presence of time dummies among the regressors. Copyright 2010 The Econometric Society.\",\"PeriodicalId\":416571,\"journal\":{\"name\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.967389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEIS: Centre for Economic & International Studies Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.967389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

介绍了一个二元面板数据模型,该模型允许状态依赖和未观察到的异质性超出可用协变量的影响。该模型为二次指数型,其结构与动态logit模型非常相似。然而,它的优点是很容易通过至少两个观测值(进一步到初始观测值)的条件似然来估计,甚至在回归量中存在时间假人的情况下。经济计量学会版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dynamic Model for Binary Panel Data With Unobserved Heterogeneity Admitting a Root-N Consistent Conditional Estimator
A model for binary panel data is introduced which allows for state dependence and unobserved heterogeneity beyond the effect of available covariates. The model is of quadratic exponential type and its structure closely resembles that of the dynamic logit model. However, it has the advantage of being easily estimable via conditional likelihood with at least two observations (further to an initial observation) and even in the presence of time dummies among the regressors. Copyright 2010 The Econometric Society.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信