Hamed Tabrizchi, A. Mosavi, Z. Vámossy, A. Várkonyi-Kóczy
{"title":"基于胸部x线影像诊断冠状病毒病(COVID-19)的密集连接卷积网络(DenseNet","authors":"Hamed Tabrizchi, A. Mosavi, Z. Vámossy, A. Várkonyi-Kóczy","doi":"10.1109/MeMeA52024.2021.9478715","DOIUrl":null,"url":null,"abstract":"Since the beginning of the coronavirus disease (COVID-19) pandemic several machine learning and deep learning methods had been introduced to detect the infected patients using the X-Ray or CT scan images. Numerous sophisticated data-driven methods had been introduced to improve the performance and the accuracy of the diagnosis models. This paper proposes an improved densely connected convolutional networks (DenseNet) method based on transfer learning (TL) to enhance the model performance. The results show promising model accuracy.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Densely Connected Convolutional Networks (DenseNet) for Diagnosing Coronavirus Disease (COVID-19) from Chest X-ray Imaging\",\"authors\":\"Hamed Tabrizchi, A. Mosavi, Z. Vámossy, A. Várkonyi-Kóczy\",\"doi\":\"10.1109/MeMeA52024.2021.9478715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the beginning of the coronavirus disease (COVID-19) pandemic several machine learning and deep learning methods had been introduced to detect the infected patients using the X-Ray or CT scan images. Numerous sophisticated data-driven methods had been introduced to improve the performance and the accuracy of the diagnosis models. This paper proposes an improved densely connected convolutional networks (DenseNet) method based on transfer learning (TL) to enhance the model performance. The results show promising model accuracy.\",\"PeriodicalId\":429222,\"journal\":{\"name\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA52024.2021.9478715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Densely Connected Convolutional Networks (DenseNet) for Diagnosing Coronavirus Disease (COVID-19) from Chest X-ray Imaging
Since the beginning of the coronavirus disease (COVID-19) pandemic several machine learning and deep learning methods had been introduced to detect the infected patients using the X-Ray or CT scan images. Numerous sophisticated data-driven methods had been introduced to improve the performance and the accuracy of the diagnosis models. This paper proposes an improved densely connected convolutional networks (DenseNet) method based on transfer learning (TL) to enhance the model performance. The results show promising model accuracy.