使用机器学习技术检测虚假网站

Prahasith Naru, Siva Kanth Reddy Chinthala, Pagadala Guna Sekhar, Chadala Ajay Kumar, Padmanaban K, Velmurugan A. K
{"title":"使用机器学习技术检测虚假网站","authors":"Prahasith Naru, Siva Kanth Reddy Chinthala, Pagadala Guna Sekhar, Chadala Ajay Kumar, Padmanaban K, Velmurugan A. K","doi":"10.1109/ICSMDI57622.2023.00090","DOIUrl":null,"url":null,"abstract":"Phishing websites are harmful websites that spoof legitimate web pages to get sensitive information from users as login, account, and bank card info. Detecting these hoax websites is a difficult topic since hacking is mostly a semantics-based assault that targets human vulnerabilities rather than network or system flaws. Machine learning systems can identify phishing assaults and have greater adaptability for forms of hack attempts, hence these are widely used. To employ this sort of method, input characteristics should be properly chosen. These aspects determine the overall performance of the solution. In this paper, two techniques Logistic Regression and Multinomial Naïve Bayes are extensively used in detecting these websites using phishing-url datasets. Out of these, Logistic Regression has achieved the highest accuracy results of 97%.","PeriodicalId":373017,"journal":{"name":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Fake Websites using Machine Learning Techniques\",\"authors\":\"Prahasith Naru, Siva Kanth Reddy Chinthala, Pagadala Guna Sekhar, Chadala Ajay Kumar, Padmanaban K, Velmurugan A. K\",\"doi\":\"10.1109/ICSMDI57622.2023.00090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phishing websites are harmful websites that spoof legitimate web pages to get sensitive information from users as login, account, and bank card info. Detecting these hoax websites is a difficult topic since hacking is mostly a semantics-based assault that targets human vulnerabilities rather than network or system flaws. Machine learning systems can identify phishing assaults and have greater adaptability for forms of hack attempts, hence these are widely used. To employ this sort of method, input characteristics should be properly chosen. These aspects determine the overall performance of the solution. In this paper, two techniques Logistic Regression and Multinomial Naïve Bayes are extensively used in detecting these websites using phishing-url datasets. Out of these, Logistic Regression has achieved the highest accuracy results of 97%.\",\"PeriodicalId\":373017,\"journal\":{\"name\":\"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSMDI57622.2023.00090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMDI57622.2023.00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钓鱼网站是一种有害的网站,它通过欺骗合法的网页来获取用户的敏感信息,如登录信息、账户信息和银行卡信息。检测这些恶作剧网站是一个困难的话题,因为黑客攻击主要是基于语义的攻击,针对的是人类的弱点,而不是网络或系统的缺陷。机器学习系统可以识别网络钓鱼攻击,并且对黑客尝试的形式具有更大的适应性,因此它们被广泛使用。要使用这种方法,必须正确选择输入特性。这些方面决定了解决方案的总体性能。在本文中,逻辑回归和多项式Naïve贝叶斯两种技术被广泛应用于利用钓鱼网址数据集检测这些网站。其中,逻辑回归达到了97%的最高准确率结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Fake Websites using Machine Learning Techniques
Phishing websites are harmful websites that spoof legitimate web pages to get sensitive information from users as login, account, and bank card info. Detecting these hoax websites is a difficult topic since hacking is mostly a semantics-based assault that targets human vulnerabilities rather than network or system flaws. Machine learning systems can identify phishing assaults and have greater adaptability for forms of hack attempts, hence these are widely used. To employ this sort of method, input characteristics should be properly chosen. These aspects determine the overall performance of the solution. In this paper, two techniques Logistic Regression and Multinomial Naïve Bayes are extensively used in detecting these websites using phishing-url datasets. Out of these, Logistic Regression has achieved the highest accuracy results of 97%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信