用Top K策略路径逼近交互动态影响图中的模型等价

Yi-feng Zeng, Yingke Chen, Prashant Doshi
{"title":"用Top K策略路径逼近交互动态影响图中的模型等价","authors":"Yi-feng Zeng, Yingke Chen, Prashant Doshi","doi":"10.1109/WI-IAT.2011.79","DOIUrl":null,"url":null,"abstract":"Interactive dynamic influence diagrams (I-DIDs) are graphical models for sequential decision making in uncertain settings shared by other agents. Algorithms for solving I-DIDs face the challenge of an exponentially growing space of behavioral models ascribed to other agents over time. Previous approaches mainly cluster behaviorally equivalent models to reduce the complexity of I-DID solutions. In this paper, we seek to further reduce the model space by introducing an approximate measure of behavioral equivalence (BE) and using it to group models. Specifically, we focus on $K$ most probable paths in the solution of each model and compare these policy paths to determine approximate BE. We discuss the challenges in computing the top $K$ policy paths and experimentally evaluate the performance of this heuristic approach in terms of the scalability and quality of the solution.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Approximating Model Equivalence in Interactive Dynamic Influence Diagrams Using Top K Policy Paths\",\"authors\":\"Yi-feng Zeng, Yingke Chen, Prashant Doshi\",\"doi\":\"10.1109/WI-IAT.2011.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactive dynamic influence diagrams (I-DIDs) are graphical models for sequential decision making in uncertain settings shared by other agents. Algorithms for solving I-DIDs face the challenge of an exponentially growing space of behavioral models ascribed to other agents over time. Previous approaches mainly cluster behaviorally equivalent models to reduce the complexity of I-DID solutions. In this paper, we seek to further reduce the model space by introducing an approximate measure of behavioral equivalence (BE) and using it to group models. Specifically, we focus on $K$ most probable paths in the solution of each model and compare these policy paths to determine approximate BE. We discuss the challenges in computing the top $K$ policy paths and experimentally evaluate the performance of this heuristic approach in terms of the scalability and quality of the solution.\",\"PeriodicalId\":128421,\"journal\":{\"name\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2011.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

交互式动态影响图(i - did)是在不确定环境下由其他代理共享的顺序决策的图形模型。解决i - did的算法面临的挑战是,随着时间的推移,归因于其他代理的行为模型空间呈指数增长。以前的方法主要是将行为等效模型聚类,以降低I-DID解决方案的复杂性。在本文中,我们试图通过引入行为等价(BE)的近似度量并将其用于模型分组来进一步减小模型空间。具体来说,我们关注每个模型解决方案中的$K$最可能路径,并比较这些策略路径以确定近似BE。我们讨论了计算top $K$策略路径的挑战,并从可扩展性和解决方案的质量方面实验性地评估了这种启发式方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating Model Equivalence in Interactive Dynamic Influence Diagrams Using Top K Policy Paths
Interactive dynamic influence diagrams (I-DIDs) are graphical models for sequential decision making in uncertain settings shared by other agents. Algorithms for solving I-DIDs face the challenge of an exponentially growing space of behavioral models ascribed to other agents over time. Previous approaches mainly cluster behaviorally equivalent models to reduce the complexity of I-DID solutions. In this paper, we seek to further reduce the model space by introducing an approximate measure of behavioral equivalence (BE) and using it to group models. Specifically, we focus on $K$ most probable paths in the solution of each model and compare these policy paths to determine approximate BE. We discuss the challenges in computing the top $K$ policy paths and experimentally evaluate the performance of this heuristic approach in terms of the scalability and quality of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信