复杂系统神经网络模型在线学习算法的收敛性

V. Azarskov, S. Nikolaienko, L. Zhiteckii
{"title":"复杂系统神经网络模型在线学习算法的收敛性","authors":"V. Azarskov, S. Nikolaienko, L. Zhiteckii","doi":"10.1109/APUAVD.2013.6705293","DOIUrl":null,"url":null,"abstract":"Asymptotic behavior of the online gradient algorithm with a constant step size employed for learning in neural network models of nonlinear systems having hidden layer are studied. The sufficient conditions guaranteeing the convergence of this algorithm in the random environment are established.","PeriodicalId":400843,"journal":{"name":"2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence properties of an online learning algorithm in neural network models of complex systems\",\"authors\":\"V. Azarskov, S. Nikolaienko, L. Zhiteckii\",\"doi\":\"10.1109/APUAVD.2013.6705293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asymptotic behavior of the online gradient algorithm with a constant step size employed for learning in neural network models of nonlinear systems having hidden layer are studied. The sufficient conditions guaranteeing the convergence of this algorithm in the random environment are established.\",\"PeriodicalId\":400843,\"journal\":{\"name\":\"2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD)\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APUAVD.2013.6705293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 2nd International Conference Actual Problems of Unmanned Air Vehicles Developments Proceedings (APUAVD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APUAVD.2013.6705293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了用于具有隐层非线性系统的神经网络模型学习的恒步长在线梯度算法的渐近行为。给出了保证该算法在随机环境下收敛的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence properties of an online learning algorithm in neural network models of complex systems
Asymptotic behavior of the online gradient algorithm with a constant step size employed for learning in neural network models of nonlinear systems having hidden layer are studied. The sufficient conditions guaranteeing the convergence of this algorithm in the random environment are established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信