基于深度卷积神经网络的艺术风格共性特征提取

Lili Kong, Jiancheng Lv, Mao Li, Hanwang Zhang
{"title":"基于深度卷积神经网络的艺术风格共性特征提取","authors":"Lili Kong, Jiancheng Lv, Mao Li, Hanwang Zhang","doi":"10.1145/3177404.3177421","DOIUrl":null,"url":null,"abstract":"While most existing works on image art style transformation generally focus on the transformation given a specific style image as input, in this paper, we consider it given a set of images of a generic style, e.g., images of Vincent van Gogh during 1889 to 1890. Compared to the specific style from only one input style image, our generic style transformation is able to remove the artifact generated from the single image such as specific objects and scenes. To this end, we propose a method to extract generic style features from a set of fine paintings. Generic style features describe these fine paintings from the global perspective, integrate features of brush strokes, color and pose contrast, scale information and orientation etc. We first obtain feature representation from these fine paintings using deep convolutional neural network (CNN), and then select generic representation from obtained representation. Finally, migrate visualized generic style features to input content image. Experimental results verify the efficiency and power of our method.","PeriodicalId":133378,"journal":{"name":"Proceedings of the International Conference on Video and Image Processing","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extracting Generic Features of Artistic Style via Deep Convolutional Neural Network\",\"authors\":\"Lili Kong, Jiancheng Lv, Mao Li, Hanwang Zhang\",\"doi\":\"10.1145/3177404.3177421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While most existing works on image art style transformation generally focus on the transformation given a specific style image as input, in this paper, we consider it given a set of images of a generic style, e.g., images of Vincent van Gogh during 1889 to 1890. Compared to the specific style from only one input style image, our generic style transformation is able to remove the artifact generated from the single image such as specific objects and scenes. To this end, we propose a method to extract generic style features from a set of fine paintings. Generic style features describe these fine paintings from the global perspective, integrate features of brush strokes, color and pose contrast, scale information and orientation etc. We first obtain feature representation from these fine paintings using deep convolutional neural network (CNN), and then select generic representation from obtained representation. Finally, migrate visualized generic style features to input content image. Experimental results verify the efficiency and power of our method.\",\"PeriodicalId\":133378,\"journal\":{\"name\":\"Proceedings of the International Conference on Video and Image Processing\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Video and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3177404.3177421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Video and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3177404.3177421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

虽然大多数现有的关于图像艺术风格转换的作品一般都集中在给定特定风格图像作为输入的转换上,但在本文中,我们认为它是给定一组通用风格的图像,例如文森特·梵高在1889年至1890年期间的图像。与仅从一个输入样式图像生成特定样式相比,我们的通用样式转换能够删除从单个图像生成的工件,例如特定对象和场景。为此,我们提出了一种从一组精美画作中提取通用风格特征的方法。一般的风格特征从全局的角度来描述这些精美的绘画,综合了笔触、色彩和姿势对比、比例信息和方向等特征。我们首先使用深度卷积神经网络(CNN)从这些精美的画作中获得特征表示,然后从得到的表示中选择通用表示。最后,将可视化的通用样式特征迁移到输入内容图像中。实验结果验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting Generic Features of Artistic Style via Deep Convolutional Neural Network
While most existing works on image art style transformation generally focus on the transformation given a specific style image as input, in this paper, we consider it given a set of images of a generic style, e.g., images of Vincent van Gogh during 1889 to 1890. Compared to the specific style from only one input style image, our generic style transformation is able to remove the artifact generated from the single image such as specific objects and scenes. To this end, we propose a method to extract generic style features from a set of fine paintings. Generic style features describe these fine paintings from the global perspective, integrate features of brush strokes, color and pose contrast, scale information and orientation etc. We first obtain feature representation from these fine paintings using deep convolutional neural network (CNN), and then select generic representation from obtained representation. Finally, migrate visualized generic style features to input content image. Experimental results verify the efficiency and power of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信