压缩测量中周期性聚类稀疏信号的恢复

Chia Wei Lim, M. Wakin
{"title":"压缩测量中周期性聚类稀疏信号的恢复","authors":"Chia Wei Lim, M. Wakin","doi":"10.1109/GlobalSIP.2014.7032149","DOIUrl":null,"url":null,"abstract":"The theory of Compressive Sensing (CS) enables the efficient acquisition of signals which are sparse or compressible in an appropriate domain. In the sub-field of CS known as model-based CS, prior knowledge of the signal sparsity profile is used to improve compression and sparse signal recovery rates. In this paper, we show that by exploiting the periodic support of Periodic Clustered Sparse (PCS) signals, model-based CS improves upon classical CS. We quantify this improvement in terms of simulations performed with a proposed greedy algorithm for PCS signal recovery and provide sampling bounds for the recovery of PCS signals from compressive measurements.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Recovery of Periodic Clustered Sparse signals from compressive measurements\",\"authors\":\"Chia Wei Lim, M. Wakin\",\"doi\":\"10.1109/GlobalSIP.2014.7032149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of Compressive Sensing (CS) enables the efficient acquisition of signals which are sparse or compressible in an appropriate domain. In the sub-field of CS known as model-based CS, prior knowledge of the signal sparsity profile is used to improve compression and sparse signal recovery rates. In this paper, we show that by exploiting the periodic support of Periodic Clustered Sparse (PCS) signals, model-based CS improves upon classical CS. We quantify this improvement in terms of simulations performed with a proposed greedy algorithm for PCS signal recovery and provide sampling bounds for the recovery of PCS signals from compressive measurements.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

压缩感知(CS)理论能够在适当的域内有效地获取稀疏或可压缩的信号。在CS的子领域称为基于模型的CS中,使用信号稀疏性轮廓的先验知识来提高压缩和稀疏信号的恢复率。在本文中,我们证明了利用周期聚类稀疏(PCS)信号的周期支持,基于模型的CS在经典CS的基础上得到了改进。我们通过对PCS信号恢复的贪心算法进行模拟来量化这种改进,并提供了从压缩测量中恢复PCS信号的采样界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recovery of Periodic Clustered Sparse signals from compressive measurements
The theory of Compressive Sensing (CS) enables the efficient acquisition of signals which are sparse or compressible in an appropriate domain. In the sub-field of CS known as model-based CS, prior knowledge of the signal sparsity profile is used to improve compression and sparse signal recovery rates. In this paper, we show that by exploiting the periodic support of Periodic Clustered Sparse (PCS) signals, model-based CS improves upon classical CS. We quantify this improvement in terms of simulations performed with a proposed greedy algorithm for PCS signal recovery and provide sampling bounds for the recovery of PCS signals from compressive measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信