基于分层遗传算法优化搜索区域的无人机路径规划

Jinghua Li, Yibin Huang, Zhao Xu, Junchang Wang, Mou Chen
{"title":"基于分层遗传算法优化搜索区域的无人机路径规划","authors":"Jinghua Li, Yibin Huang, Zhao Xu, Junchang Wang, Mou Chen","doi":"10.1109/ICCA.2017.8003203","DOIUrl":null,"url":null,"abstract":"In general, the use of genetic algorithms (GA) for unmanned aerial vehicle (UAV) path planning in the whole mission area will cause detours. To improve this issue, a hierarchical genetic algorithm with optimized search region (OSR-HGA) is proposed. This algorithm reduces the search area of hierarchical genetic algorithm automatically by evaluating the distribution of threat sources in the mission area. To guide the searching direction of the algorithm and reduce the occurrence of detours, the heading correction cost and minimum turning radius cost are added to the cost function. The experimental results show the new method can enhance the stability of path planning algorithm by finding shorter paths with less cost and reducing the occurrence of detours effectively.","PeriodicalId":379025,"journal":{"name":"2017 13th IEEE International Conference on Control & Automation (ICCA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Path planning of UAV based on hierarchical genetic algorithm with optimized search region\",\"authors\":\"Jinghua Li, Yibin Huang, Zhao Xu, Junchang Wang, Mou Chen\",\"doi\":\"10.1109/ICCA.2017.8003203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In general, the use of genetic algorithms (GA) for unmanned aerial vehicle (UAV) path planning in the whole mission area will cause detours. To improve this issue, a hierarchical genetic algorithm with optimized search region (OSR-HGA) is proposed. This algorithm reduces the search area of hierarchical genetic algorithm automatically by evaluating the distribution of threat sources in the mission area. To guide the searching direction of the algorithm and reduce the occurrence of detours, the heading correction cost and minimum turning radius cost are added to the cost function. The experimental results show the new method can enhance the stability of path planning algorithm by finding shorter paths with less cost and reducing the occurrence of detours effectively.\",\"PeriodicalId\":379025,\"journal\":{\"name\":\"2017 13th IEEE International Conference on Control & Automation (ICCA)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE International Conference on Control & Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2017.8003203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE International Conference on Control & Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2017.8003203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

一般情况下,使用遗传算法进行无人机在整个任务区的路径规划会造成绕行。为了解决这一问题,提出了一种优化搜索区域的分层遗传算法(OSR-HGA)。该算法通过评估任务区域内威胁源的分布,自动缩小了分层遗传算法的搜索面积。在代价函数中加入航向修正代价和最小转弯半径代价,以指导算法的搜索方向,减少弯路的发生。实验结果表明,该方法能以更小的代价找到更短的路径,有效地减少了绕路的发生,提高了路径规划算法的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path planning of UAV based on hierarchical genetic algorithm with optimized search region
In general, the use of genetic algorithms (GA) for unmanned aerial vehicle (UAV) path planning in the whole mission area will cause detours. To improve this issue, a hierarchical genetic algorithm with optimized search region (OSR-HGA) is proposed. This algorithm reduces the search area of hierarchical genetic algorithm automatically by evaluating the distribution of threat sources in the mission area. To guide the searching direction of the algorithm and reduce the occurrence of detours, the heading correction cost and minimum turning radius cost are added to the cost function. The experimental results show the new method can enhance the stability of path planning algorithm by finding shorter paths with less cost and reducing the occurrence of detours effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信