基于变化点检测的电价预测校准窗口选择

Julia Nasiadka, W. Nitka, R. Weron
{"title":"基于变化点检测的电价预测校准窗口选择","authors":"Julia Nasiadka, W. Nitka, R. Weron","doi":"10.48550/arXiv.2204.00872","DOIUrl":null,"url":null,"abstract":"We employ a recently proposed change-point detection algorithm, the Narrowest-Over-Threshold (NOT) method, to select subperiods of past observations that are similar to the currently recorded values. Then, contrarily to the traditional time series approach in which the most recent $\\tau$ observations are taken as the calibration sample, we estimate autoregressive models only for data in these subperiods. We illustrate our approach using a challenging dataset - day-ahead electricity prices in the German EPEX SPOT market - and observe a significant improvement in forecasting accuracy compared to commonly used approaches, including the Autoregressive Hybrid Nearest Neighbors (ARHNN) method.","PeriodicalId":125954,"journal":{"name":"International Conference on Conceptual Structures","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Calibration window selection based on change-point detection for forecasting electricity prices\",\"authors\":\"Julia Nasiadka, W. Nitka, R. Weron\",\"doi\":\"10.48550/arXiv.2204.00872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We employ a recently proposed change-point detection algorithm, the Narrowest-Over-Threshold (NOT) method, to select subperiods of past observations that are similar to the currently recorded values. Then, contrarily to the traditional time series approach in which the most recent $\\\\tau$ observations are taken as the calibration sample, we estimate autoregressive models only for data in these subperiods. We illustrate our approach using a challenging dataset - day-ahead electricity prices in the German EPEX SPOT market - and observe a significant improvement in forecasting accuracy compared to commonly used approaches, including the Autoregressive Hybrid Nearest Neighbors (ARHNN) method.\",\"PeriodicalId\":125954,\"journal\":{\"name\":\"International Conference on Conceptual Structures\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Conceptual Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.00872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Conceptual Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.00872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们采用最近提出的一种变化点检测算法,即最小阈值(NOT)方法,来选择与当前记录值相似的过去观测的子周期。然后,与以最近的$\tau$观测值作为校准样本的传统时间序列方法相反,我们仅对这些子周期的数据估计自回归模型。我们使用具有挑战性的数据集(德国EPEX现货市场的日前电价)来说明我们的方法,并观察到与常用方法(包括自回归混合最近邻(ARHNN)方法)相比,预测精度有显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibration window selection based on change-point detection for forecasting electricity prices
We employ a recently proposed change-point detection algorithm, the Narrowest-Over-Threshold (NOT) method, to select subperiods of past observations that are similar to the currently recorded values. Then, contrarily to the traditional time series approach in which the most recent $\tau$ observations are taken as the calibration sample, we estimate autoregressive models only for data in these subperiods. We illustrate our approach using a challenging dataset - day-ahead electricity prices in the German EPEX SPOT market - and observe a significant improvement in forecasting accuracy compared to commonly used approaches, including the Autoregressive Hybrid Nearest Neighbors (ARHNN) method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信