{"title":"无序树挖掘及其在系统发育中的应用","authors":"D. Shasha, J. Wang, Sen Zhang","doi":"10.1109/ICDE.2004.1320039","DOIUrl":null,"url":null,"abstract":"Frequent structure mining (FSM) aims to discover and extract patterns frequently occurring in structural data, such as trees and graphs. FSM finds many applications in bioinformatics, XML processing, Web log analysis, and so on. We present a new FSM technique for finding patterns in rooted unordered labeled trees. The patterns of interest are cousin pairs in these trees. A cousin pair is a pair of nodes sharing the same parent, the same grandparent, or the same great-grandparent, etc. Given a tree T, our algorithm finds all interesting cousin pairs of T in O(|T|/sup 2/) time where |T| is the number of nodes in T. Experimental results on synthetic data and phylogenies show the scalability and effectiveness of the proposed technique. To demonstrate the usefulness of our approach, we discuss its applications to locating co-occurring patterns in multiple evolutionary trees, evaluating the consensus of equally parsimonious trees, and finding kernel trees of groups of phylogenies. We also describe extensions of our algorithms for undirected acyclic graphs (or free trees).","PeriodicalId":358862,"journal":{"name":"Proceedings. 20th International Conference on Data Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":"{\"title\":\"Unordered tree mining with applications to phylogeny\",\"authors\":\"D. Shasha, J. Wang, Sen Zhang\",\"doi\":\"10.1109/ICDE.2004.1320039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequent structure mining (FSM) aims to discover and extract patterns frequently occurring in structural data, such as trees and graphs. FSM finds many applications in bioinformatics, XML processing, Web log analysis, and so on. We present a new FSM technique for finding patterns in rooted unordered labeled trees. The patterns of interest are cousin pairs in these trees. A cousin pair is a pair of nodes sharing the same parent, the same grandparent, or the same great-grandparent, etc. Given a tree T, our algorithm finds all interesting cousin pairs of T in O(|T|/sup 2/) time where |T| is the number of nodes in T. Experimental results on synthetic data and phylogenies show the scalability and effectiveness of the proposed technique. To demonstrate the usefulness of our approach, we discuss its applications to locating co-occurring patterns in multiple evolutionary trees, evaluating the consensus of equally parsimonious trees, and finding kernel trees of groups of phylogenies. We also describe extensions of our algorithms for undirected acyclic graphs (or free trees).\",\"PeriodicalId\":358862,\"journal\":{\"name\":\"Proceedings. 20th International Conference on Data Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 20th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2004.1320039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 20th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2004.1320039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unordered tree mining with applications to phylogeny
Frequent structure mining (FSM) aims to discover and extract patterns frequently occurring in structural data, such as trees and graphs. FSM finds many applications in bioinformatics, XML processing, Web log analysis, and so on. We present a new FSM technique for finding patterns in rooted unordered labeled trees. The patterns of interest are cousin pairs in these trees. A cousin pair is a pair of nodes sharing the same parent, the same grandparent, or the same great-grandparent, etc. Given a tree T, our algorithm finds all interesting cousin pairs of T in O(|T|/sup 2/) time where |T| is the number of nodes in T. Experimental results on synthetic data and phylogenies show the scalability and effectiveness of the proposed technique. To demonstrate the usefulness of our approach, we discuss its applications to locating co-occurring patterns in multiple evolutionary trees, evaluating the consensus of equally parsimonious trees, and finding kernel trees of groups of phylogenies. We also describe extensions of our algorithms for undirected acyclic graphs (or free trees).