宏观政策评价的充分统计方法

Regis Barnichon, G. Mesters
{"title":"宏观政策评价的充分统计方法","authors":"Regis Barnichon, G. Mesters","doi":"10.24148/wp2022-15","DOIUrl":null,"url":null,"abstract":"The evaluation of macroeconomic policy decisions has traditionally relied on the formulation of a specific economic model. In this work, we show that two statistics are sufficient to detect, often even correct, non-optimal policies, i.e., policies that do not minimize the loss function. The two sufficient statistics are (i) the effects of policy shocks on the policy objectives, and (ii) forecasts for the policy objectives conditional on the policy decision. Both statistics can be estimated without relying on a specific model. We illustrate the method by studying US monetary policy decisions.","PeriodicalId":250744,"journal":{"name":"Federal Reserve Bank of San Francisco, Working Paper Series","volume":"75 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Sufficient Statistics Approach for Macro Policy Evaluation\",\"authors\":\"Regis Barnichon, G. Mesters\",\"doi\":\"10.24148/wp2022-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evaluation of macroeconomic policy decisions has traditionally relied on the formulation of a specific economic model. In this work, we show that two statistics are sufficient to detect, often even correct, non-optimal policies, i.e., policies that do not minimize the loss function. The two sufficient statistics are (i) the effects of policy shocks on the policy objectives, and (ii) forecasts for the policy objectives conditional on the policy decision. Both statistics can be estimated without relying on a specific model. We illustrate the method by studying US monetary policy decisions.\",\"PeriodicalId\":250744,\"journal\":{\"name\":\"Federal Reserve Bank of San Francisco, Working Paper Series\",\"volume\":\"75 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Federal Reserve Bank of San Francisco, Working Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24148/wp2022-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Federal Reserve Bank of San Francisco, Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24148/wp2022-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

对宏观经济政策决定的评价传统上依赖于具体经济模型的制定。在这项工作中,我们证明了两个统计量足以检测(通常甚至是正确的)非最优策略,即不使损失函数最小化的策略。两个充分的统计数据是(i)政策冲击对政策目标的影响,以及(ii)以政策决定为条件的政策目标预测。这两种统计数据都可以在不依赖特定模型的情况下进行估计。我们通过研究美国的货币政策决定来说明这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sufficient Statistics Approach for Macro Policy Evaluation
The evaluation of macroeconomic policy decisions has traditionally relied on the formulation of a specific economic model. In this work, we show that two statistics are sufficient to detect, often even correct, non-optimal policies, i.e., policies that do not minimize the loss function. The two sufficient statistics are (i) the effects of policy shocks on the policy objectives, and (ii) forecasts for the policy objectives conditional on the policy decision. Both statistics can be estimated without relying on a specific model. We illustrate the method by studying US monetary policy decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信