通过线性模型、梯度增强树和度量优化解决RecSys挑战2015

Róbert Pálovics, Peter Szalai, Levente Kocsis, A. Szabó, Erzsébet Frigó, Júlia Pap, Zsófia K. Nyikes, A. Benczúr
{"title":"通过线性模型、梯度增强树和度量优化解决RecSys挑战2015","authors":"Róbert Pálovics, Peter Szalai, Levente Kocsis, A. Szabó, Erzsébet Frigó, Júlia Pap, Zsófia K. Nyikes, A. Benczúr","doi":"10.1145/2813448.2813513","DOIUrl":null,"url":null,"abstract":"The RecSys Challenge 2015 task requested prediction for items purchased in online web shop sessions. We describe our method that reached fifth place on the leaderboard by constructing a large number of item, session, and session-item features and using linear models and gradient boosted trees for learning. An important element of our method included optimization for the specific evaluation metric.","PeriodicalId":324873,"journal":{"name":"Proceedings of the 2015 International ACM Recommender Systems Challenge","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Solving RecSys Challenge 2015 by Linear Models, Gradient Boosted Trees and Metric Optimization\",\"authors\":\"Róbert Pálovics, Peter Szalai, Levente Kocsis, A. Szabó, Erzsébet Frigó, Júlia Pap, Zsófia K. Nyikes, A. Benczúr\",\"doi\":\"10.1145/2813448.2813513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The RecSys Challenge 2015 task requested prediction for items purchased in online web shop sessions. We describe our method that reached fifth place on the leaderboard by constructing a large number of item, session, and session-item features and using linear models and gradient boosted trees for learning. An important element of our method included optimization for the specific evaluation metric.\",\"PeriodicalId\":324873,\"journal\":{\"name\":\"Proceedings of the 2015 International ACM Recommender Systems Challenge\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International ACM Recommender Systems Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2813448.2813513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International ACM Recommender Systems Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2813448.2813513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

RecSys挑战2015任务要求预测在线网上商店会话中购买的物品。我们描述了我们的方法,通过构建大量的道具、会话和会话道具特征,并使用线性模型和梯度增强树进行学习,从而在排行榜上排名第五。我们的方法的一个重要元素包括对特定评价指标的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving RecSys Challenge 2015 by Linear Models, Gradient Boosted Trees and Metric Optimization
The RecSys Challenge 2015 task requested prediction for items purchased in online web shop sessions. We describe our method that reached fifth place on the leaderboard by constructing a large number of item, session, and session-item features and using linear models and gradient boosted trees for learning. An important element of our method included optimization for the specific evaluation metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信