Róbert Pálovics, Peter Szalai, Levente Kocsis, A. Szabó, Erzsébet Frigó, Júlia Pap, Zsófia K. Nyikes, A. Benczúr
{"title":"通过线性模型、梯度增强树和度量优化解决RecSys挑战2015","authors":"Róbert Pálovics, Peter Szalai, Levente Kocsis, A. Szabó, Erzsébet Frigó, Júlia Pap, Zsófia K. Nyikes, A. Benczúr","doi":"10.1145/2813448.2813513","DOIUrl":null,"url":null,"abstract":"The RecSys Challenge 2015 task requested prediction for items purchased in online web shop sessions. We describe our method that reached fifth place on the leaderboard by constructing a large number of item, session, and session-item features and using linear models and gradient boosted trees for learning. An important element of our method included optimization for the specific evaluation metric.","PeriodicalId":324873,"journal":{"name":"Proceedings of the 2015 International ACM Recommender Systems Challenge","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Solving RecSys Challenge 2015 by Linear Models, Gradient Boosted Trees and Metric Optimization\",\"authors\":\"Róbert Pálovics, Peter Szalai, Levente Kocsis, A. Szabó, Erzsébet Frigó, Júlia Pap, Zsófia K. Nyikes, A. Benczúr\",\"doi\":\"10.1145/2813448.2813513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The RecSys Challenge 2015 task requested prediction for items purchased in online web shop sessions. We describe our method that reached fifth place on the leaderboard by constructing a large number of item, session, and session-item features and using linear models and gradient boosted trees for learning. An important element of our method included optimization for the specific evaluation metric.\",\"PeriodicalId\":324873,\"journal\":{\"name\":\"Proceedings of the 2015 International ACM Recommender Systems Challenge\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International ACM Recommender Systems Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2813448.2813513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International ACM Recommender Systems Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2813448.2813513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving RecSys Challenge 2015 by Linear Models, Gradient Boosted Trees and Metric Optimization
The RecSys Challenge 2015 task requested prediction for items purchased in online web shop sessions. We describe our method that reached fifth place on the leaderboard by constructing a large number of item, session, and session-item features and using linear models and gradient boosted trees for learning. An important element of our method included optimization for the specific evaluation metric.