用于水网监测的微加工热流量传感器设计

Ferdous Shaun, Hugo Regina, F. Marty, E. Nefzaoui, T. Bourouina, W. Cesar
{"title":"用于水网监测的微加工热流量传感器设计","authors":"Ferdous Shaun, Hugo Regina, F. Marty, E. Nefzaoui, T. Bourouina, W. Cesar","doi":"10.1109/DTIP.2017.7984474","DOIUrl":null,"url":null,"abstract":"We report on micro-machined flow-rate sensors as part of autonomous multi-parameter sensing devices for water network monitoring. Three different versions of the flow-rate sensors have been designed, fabricated and experimentally characterized. Those sensors are made of identical micrometric platinum resistors deposited on two different substrates-glass and silicon with and without insulation layer. The sensors were tested under the anemometric operating scheme. They were characterized under a water velocity range from 0 to 3.68 m/s. We highlight the fact that the glass substrate device is more sensitive and less power-consuming than the silicon one under the identical operating condition, which requires further design strategies when using silicon as the substrate material. Experimental results are analyzed with respect to CFD simulations with the Finite Element Method.","PeriodicalId":354534,"journal":{"name":"2017 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Design of micro-fabricated thermal flow-rate sensor for water network monitoring\",\"authors\":\"Ferdous Shaun, Hugo Regina, F. Marty, E. Nefzaoui, T. Bourouina, W. Cesar\",\"doi\":\"10.1109/DTIP.2017.7984474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on micro-machined flow-rate sensors as part of autonomous multi-parameter sensing devices for water network monitoring. Three different versions of the flow-rate sensors have been designed, fabricated and experimentally characterized. Those sensors are made of identical micrometric platinum resistors deposited on two different substrates-glass and silicon with and without insulation layer. The sensors were tested under the anemometric operating scheme. They were characterized under a water velocity range from 0 to 3.68 m/s. We highlight the fact that the glass substrate device is more sensitive and less power-consuming than the silicon one under the identical operating condition, which requires further design strategies when using silicon as the substrate material. Experimental results are analyzed with respect to CFD simulations with the Finite Element Method.\",\"PeriodicalId\":354534,\"journal\":{\"name\":\"2017 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DTIP.2017.7984474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTIP.2017.7984474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们报告了微机械流量传感器作为自主多参数传感装置的一部分,用于水网监测。设计、制作了三种不同版本的流量传感器,并对其进行了实验表征。这些传感器是由相同的微米级铂电阻制成的,它们被放置在两种不同的基板上——有和没有绝缘层的玻璃和硅。在风速操作方案下对传感器进行了测试。它们在0 ~ 3.68 m/s的流速范围内进行了表征。我们强调,在相同的工作条件下,玻璃基板器件比硅基板器件更敏感,功耗更低,这需要在使用硅基板材料时进一步设计策略。用有限元方法对实验结果进行了CFD模拟分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of micro-fabricated thermal flow-rate sensor for water network monitoring
We report on micro-machined flow-rate sensors as part of autonomous multi-parameter sensing devices for water network monitoring. Three different versions of the flow-rate sensors have been designed, fabricated and experimentally characterized. Those sensors are made of identical micrometric platinum resistors deposited on two different substrates-glass and silicon with and without insulation layer. The sensors were tested under the anemometric operating scheme. They were characterized under a water velocity range from 0 to 3.68 m/s. We highlight the fact that the glass substrate device is more sensitive and less power-consuming than the silicon one under the identical operating condition, which requires further design strategies when using silicon as the substrate material. Experimental results are analyzed with respect to CFD simulations with the Finite Element Method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信