一类协同过滤的非对称贝叶斯个性化排序

Sha Ouyang, Lin Li, Weike Pan, Zhong Ming
{"title":"一类协同过滤的非对称贝叶斯个性化排序","authors":"Sha Ouyang, Lin Li, Weike Pan, Zhong Ming","doi":"10.1145/3298689.3347051","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel preference assumption for modeling users' one-class feedback such as \"thumb up\" in an important recommendation problem called one-class collaborative filtering (OCCF). Specifically, we address a fundamental limitation of a recent symmetric pairwise preference assumption and propose a novel and first asymmetric one, which is able to make the preferences of different users more comparable. With the proposed asymmetric pairwise preference assumption, we further design a novel recommendation algorithm called asymmetric Bayesian personalized ranking (ABPR). Extensive empirical studies on two large and public datasets show that our ABPR performs significantly better than several state-of-the-art recommendation methods with either pointwise preference assumption or pairwise preference assumption.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Asymmetric Bayesian personalized ranking for one-class collaborative filtering\",\"authors\":\"Sha Ouyang, Lin Li, Weike Pan, Zhong Ming\",\"doi\":\"10.1145/3298689.3347051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel preference assumption for modeling users' one-class feedback such as \\\"thumb up\\\" in an important recommendation problem called one-class collaborative filtering (OCCF). Specifically, we address a fundamental limitation of a recent symmetric pairwise preference assumption and propose a novel and first asymmetric one, which is able to make the preferences of different users more comparable. With the proposed asymmetric pairwise preference assumption, we further design a novel recommendation algorithm called asymmetric Bayesian personalized ranking (ABPR). Extensive empirical studies on two large and public datasets show that our ABPR performs significantly better than several state-of-the-art recommendation methods with either pointwise preference assumption or pairwise preference assumption.\",\"PeriodicalId\":215384,\"journal\":{\"name\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3298689.3347051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3347051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们提出了一个新的偏好假设来建模用户的单类反馈,如“点赞”,这是一个重要的推荐问题,称为单类协同过滤(OCCF)。具体来说,我们解决了最近对称配对偏好假设的一个基本限制,并提出了一个新的和第一个不对称的假设,它能够使不同用户的偏好更具可比性。在提出的非对称配对偏好假设的基础上,我们进一步设计了一种新的推荐算法——非对称贝叶斯个性化排名(ABPR)。在两个大型公开数据集上进行的大量实证研究表明,我们的ABPR比采用点偏好假设或两两偏好假设的几种最先进的推荐方法表现得明显更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric Bayesian personalized ranking for one-class collaborative filtering
In this paper, we propose a novel preference assumption for modeling users' one-class feedback such as "thumb up" in an important recommendation problem called one-class collaborative filtering (OCCF). Specifically, we address a fundamental limitation of a recent symmetric pairwise preference assumption and propose a novel and first asymmetric one, which is able to make the preferences of different users more comparable. With the proposed asymmetric pairwise preference assumption, we further design a novel recommendation algorithm called asymmetric Bayesian personalized ranking (ABPR). Extensive empirical studies on two large and public datasets show that our ABPR performs significantly better than several state-of-the-art recommendation methods with either pointwise preference assumption or pairwise preference assumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信