基于视频视觉变换的时空注意足球视频场景检索

Yaozong Gan, Ren Togo, Takahiro Ogawa, M. Haseyama
{"title":"基于视频视觉变换的时空注意足球视频场景检索","authors":"Yaozong Gan, Ren Togo, Takahiro Ogawa, M. Haseyama","doi":"10.1109/ICCE-Taiwan55306.2022.9869188","DOIUrl":null,"url":null,"abstract":"This paper presents a scene retrieval method in soccer videos with video vision Transformer (ViViT). In soccer coaching, it is difficult for the training staff to find the required scenes efficiently from the large number of soccer videos. We tackle this problem with a simple yet effective method. We train ViViT and obtain the output token features of the soccer scene by the pre-trained ViViT model. The output tokens of the pre-trained ViViT contain spatio-temporal information of soccer scenes. We then transform a query scene and candidate scenes into output token features using the pre-trained ViViT and calculate the similarity between the tokens with cosine similarity. We conducted experiments on SoccerNet-V2dataset. The experimental results show that the proposed method achieves outstanding retrieval accuracy compared to the previous methods.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scene Retrieval in Soccer Videos by Spatial-temporal Attention with Video Vision Transformer\",\"authors\":\"Yaozong Gan, Ren Togo, Takahiro Ogawa, M. Haseyama\",\"doi\":\"10.1109/ICCE-Taiwan55306.2022.9869188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a scene retrieval method in soccer videos with video vision Transformer (ViViT). In soccer coaching, it is difficult for the training staff to find the required scenes efficiently from the large number of soccer videos. We tackle this problem with a simple yet effective method. We train ViViT and obtain the output token features of the soccer scene by the pre-trained ViViT model. The output tokens of the pre-trained ViViT contain spatio-temporal information of soccer scenes. We then transform a query scene and candidate scenes into output token features using the pre-trained ViViT and calculate the similarity between the tokens with cosine similarity. We conducted experiments on SoccerNet-V2dataset. The experimental results show that the proposed method achieves outstanding retrieval accuracy compared to the previous methods.\",\"PeriodicalId\":164671,\"journal\":{\"name\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于视频视觉转换器(ViViT)的足球视频场景检索方法。在足球训练中,训练人员很难从大量的足球视频中高效地找到所需的场景。我们用一种简单而有效的方法来解决这个问题。我们对ViViT进行训练,并通过预训练好的ViViT模型获得足球场景的输出token特征。预训练ViViT的输出令牌包含了足球场景的时空信息。然后,我们使用预训练的ViViT将查询场景和候选场景转换为输出标记特征,并计算标记之间的余弦相似度。我们在SoccerNet-V2dataset上进行了实验。实验结果表明,与以往的方法相比,该方法取得了较好的检索精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scene Retrieval in Soccer Videos by Spatial-temporal Attention with Video Vision Transformer
This paper presents a scene retrieval method in soccer videos with video vision Transformer (ViViT). In soccer coaching, it is difficult for the training staff to find the required scenes efficiently from the large number of soccer videos. We tackle this problem with a simple yet effective method. We train ViViT and obtain the output token features of the soccer scene by the pre-trained ViViT model. The output tokens of the pre-trained ViViT contain spatio-temporal information of soccer scenes. We then transform a query scene and candidate scenes into output token features using the pre-trained ViViT and calculate the similarity between the tokens with cosine similarity. We conducted experiments on SoccerNet-V2dataset. The experimental results show that the proposed method achieves outstanding retrieval accuracy compared to the previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信