最优控制问题的最大+基本解半群

P. Dower, W. McEneaney, Huan Zhang
{"title":"最优控制问题的最大+基本解半群","authors":"P. Dower, W. McEneaney, Huan Zhang","doi":"10.1137/1.9781611974072.51","DOIUrl":null,"url":null,"abstract":"Recent work concerning the development of fundamental solution semigroups for specific classes of optimal control and related problems is unified and generalized. By exploiting max-plus linearity, semiconvexity, and semigroup properties of the corresponding dynamic programming evolution operator, two types of max-plus fundamental solution semigroup are presented. These semigroups, referred to respectively as max-plus primal and max-plus dual space fundamental solution semigroups, consist of horizon indexed max-plus linear maxplus integral operators that facilitate the propagation of value functions, or (respectively) their semiconvex transform, to longer time horizons via simple max-plus convolutions. Properties of these semigroups, and interconnections between them, are established. Their application to solving specific problems, including a class of operator differential Riccati equations, is summarized.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Max-plus fundamental solution semigroups for optimal control problems\",\"authors\":\"P. Dower, W. McEneaney, Huan Zhang\",\"doi\":\"10.1137/1.9781611974072.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent work concerning the development of fundamental solution semigroups for specific classes of optimal control and related problems is unified and generalized. By exploiting max-plus linearity, semiconvexity, and semigroup properties of the corresponding dynamic programming evolution operator, two types of max-plus fundamental solution semigroup are presented. These semigroups, referred to respectively as max-plus primal and max-plus dual space fundamental solution semigroups, consist of horizon indexed max-plus linear maxplus integral operators that facilitate the propagation of value functions, or (respectively) their semiconvex transform, to longer time horizons via simple max-plus convolutions. Properties of these semigroups, and interconnections between them, are established. Their application to solving specific problems, including a class of operator differential Riccati equations, is summarized.\",\"PeriodicalId\":193106,\"journal\":{\"name\":\"SIAM Conf. on Control and its Applications\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Conf. on Control and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974072.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974072.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

最近关于一类最优控制和相关问题的基本解半群的发展的工作是统一和推广的。利用相应动态规划演化算子的最大+线性、半涡旋和半群性质,给出了两类最大+基本解半群。这些半群,分别被称为max-plus原初和max-plus对偶空间基本解半群,由水平索引max-plus线性maxplus积分算子组成,这些算子促进了值函数的传播,或者(分别)它们的半凸变换,通过简单的max-plus卷积到更长的时间范围。建立了这些半群的性质和它们之间的相互联系。总结了它们在求解具体问题中的应用,包括一类算子微分里卡第方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Max-plus fundamental solution semigroups for optimal control problems
Recent work concerning the development of fundamental solution semigroups for specific classes of optimal control and related problems is unified and generalized. By exploiting max-plus linearity, semiconvexity, and semigroup properties of the corresponding dynamic programming evolution operator, two types of max-plus fundamental solution semigroup are presented. These semigroups, referred to respectively as max-plus primal and max-plus dual space fundamental solution semigroups, consist of horizon indexed max-plus linear maxplus integral operators that facilitate the propagation of value functions, or (respectively) their semiconvex transform, to longer time horizons via simple max-plus convolutions. Properties of these semigroups, and interconnections between them, are established. Their application to solving specific problems, including a class of operator differential Riccati equations, is summarized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信