基于分支决斗q网络的分布式储能微电网在线调度

H. Shuai, F. Li, Héctor Pulgar-Painemal, Yaosuo Xue
{"title":"基于分支决斗q网络的分布式储能微电网在线调度","authors":"H. Shuai, F. Li, Héctor Pulgar-Painemal, Yaosuo Xue","doi":"10.1109/PESGM48719.2022.9916768","DOIUrl":null,"url":null,"abstract":"This letter investigates a Branching Dueling Q-Network (BDQ) based online operation strategy for a microgrid with distributed battery energy storage systems (BESSs) operating under uncertainties. The developed deep reinforcement learning (DRL) based microgrid online optimization strategy can achieve a linear increase in the number of neural network outputs with the number of distributed BESSs, which overcomes the curse of dimensionality caused by the charge and discharge decisions of multiple BESSs. Numerical simulations validate the effectiveness of the proposed method.","PeriodicalId":388672,"journal":{"name":"2022 IEEE Power & Energy Society General Meeting (PESGM)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Branching Dueling Q-Network-Based Online Scheduling of a Microgrid With Distributed Energy Storage Systems\",\"authors\":\"H. Shuai, F. Li, Héctor Pulgar-Painemal, Yaosuo Xue\",\"doi\":\"10.1109/PESGM48719.2022.9916768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter investigates a Branching Dueling Q-Network (BDQ) based online operation strategy for a microgrid with distributed battery energy storage systems (BESSs) operating under uncertainties. The developed deep reinforcement learning (DRL) based microgrid online optimization strategy can achieve a linear increase in the number of neural network outputs with the number of distributed BESSs, which overcomes the curse of dimensionality caused by the charge and discharge decisions of multiple BESSs. Numerical simulations validate the effectiveness of the proposed method.\",\"PeriodicalId\":388672,\"journal\":{\"name\":\"2022 IEEE Power & Energy Society General Meeting (PESGM)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Power & Energy Society General Meeting (PESGM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM48719.2022.9916768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM48719.2022.9916768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于分支决斗q网络(BDQ)的分布式电池储能系统(BESSs)微电网在不确定条件下的在线运行策略。提出的基于深度强化学习(DRL)的微电网在线优化策略可以实现神经网络输出数量随分布式bess数量的线性增加,克服了多个bess充放电决策带来的维数困扰。数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Branching Dueling Q-Network-Based Online Scheduling of a Microgrid With Distributed Energy Storage Systems
This letter investigates a Branching Dueling Q-Network (BDQ) based online operation strategy for a microgrid with distributed battery energy storage systems (BESSs) operating under uncertainties. The developed deep reinforcement learning (DRL) based microgrid online optimization strategy can achieve a linear increase in the number of neural network outputs with the number of distributed BESSs, which overcomes the curse of dimensionality caused by the charge and discharge decisions of multiple BESSs. Numerical simulations validate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信