{"title":"防御异构物联网系统中的跨技术干扰","authors":"Sihan Yu, ChunChih Lin, Xiaonan Zhang, Linke Guo","doi":"10.1109/ICDCS54860.2022.00073","DOIUrl":null,"url":null,"abstract":"The wide deployment of IoT devices has resulted in a critical shortage of spectrum resources. Many IoT devices coexist on the same spectrum band, where the network performance is always degraded. As a promising solution, the Cross-Technology Communication (CTC) enables the direct communication among heterogeneous IoT devices. Unfortunately, the emerging cross-technology attacks have demonstrated their high success rates in terms of spoofing the end IoT devices or jamming the communication channels. In this paper, we investigate a novel cross-technology jamming issue for a distributed heterogeneous IoT system. Compared with traditional jamming methods, the cross-technology jammer has a much higher jamming power, wider jamming bandwidth, and stronger stealthiness, all of which deserve a complete re-thinking of defensive mechanisms. Therefore, we propose a hybrid anti-jamming scheme that jointly considers frequency hopping and power control techniques. Specifically, we model the anti-jamming process as a Markov Decision Process (MDP) and adopt Deep Q-Network (DQN) to find the optimal strategy. Extensive real-world experiments show that the goodput (payload data) of our anti-jamming scheme can achieve up to 2X and 1.39X than the passive and random anti-jamming approaches, respectively. In particular, our anti-jamming scheme provides 78% of goodput with the presence of a cross-technology jammer, outperforming existing passive and random anti-jamming scheme designs at 37.6% and 54.1%.","PeriodicalId":225883,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Defending against Cross-Technology Jamming in Heterogeneous IoT Systems\",\"authors\":\"Sihan Yu, ChunChih Lin, Xiaonan Zhang, Linke Guo\",\"doi\":\"10.1109/ICDCS54860.2022.00073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wide deployment of IoT devices has resulted in a critical shortage of spectrum resources. Many IoT devices coexist on the same spectrum band, where the network performance is always degraded. As a promising solution, the Cross-Technology Communication (CTC) enables the direct communication among heterogeneous IoT devices. Unfortunately, the emerging cross-technology attacks have demonstrated their high success rates in terms of spoofing the end IoT devices or jamming the communication channels. In this paper, we investigate a novel cross-technology jamming issue for a distributed heterogeneous IoT system. Compared with traditional jamming methods, the cross-technology jammer has a much higher jamming power, wider jamming bandwidth, and stronger stealthiness, all of which deserve a complete re-thinking of defensive mechanisms. Therefore, we propose a hybrid anti-jamming scheme that jointly considers frequency hopping and power control techniques. Specifically, we model the anti-jamming process as a Markov Decision Process (MDP) and adopt Deep Q-Network (DQN) to find the optimal strategy. Extensive real-world experiments show that the goodput (payload data) of our anti-jamming scheme can achieve up to 2X and 1.39X than the passive and random anti-jamming approaches, respectively. In particular, our anti-jamming scheme provides 78% of goodput with the presence of a cross-technology jammer, outperforming existing passive and random anti-jamming scheme designs at 37.6% and 54.1%.\",\"PeriodicalId\":225883,\"journal\":{\"name\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS54860.2022.00073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS54860.2022.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Defending against Cross-Technology Jamming in Heterogeneous IoT Systems
The wide deployment of IoT devices has resulted in a critical shortage of spectrum resources. Many IoT devices coexist on the same spectrum band, where the network performance is always degraded. As a promising solution, the Cross-Technology Communication (CTC) enables the direct communication among heterogeneous IoT devices. Unfortunately, the emerging cross-technology attacks have demonstrated their high success rates in terms of spoofing the end IoT devices or jamming the communication channels. In this paper, we investigate a novel cross-technology jamming issue for a distributed heterogeneous IoT system. Compared with traditional jamming methods, the cross-technology jammer has a much higher jamming power, wider jamming bandwidth, and stronger stealthiness, all of which deserve a complete re-thinking of defensive mechanisms. Therefore, we propose a hybrid anti-jamming scheme that jointly considers frequency hopping and power control techniques. Specifically, we model the anti-jamming process as a Markov Decision Process (MDP) and adopt Deep Q-Network (DQN) to find the optimal strategy. Extensive real-world experiments show that the goodput (payload data) of our anti-jamming scheme can achieve up to 2X and 1.39X than the passive and random anti-jamming approaches, respectively. In particular, our anti-jamming scheme provides 78% of goodput with the presence of a cross-technology jammer, outperforming existing passive and random anti-jamming scheme designs at 37.6% and 54.1%.