{"title":"利用反射光变化在开普勒数据中探测和表征非凌日系外行星","authors":"K. Knuth, B. Placek, Zachary Richards","doi":"10.1109/CIDU.2012.6382198","DOIUrl":null,"url":null,"abstract":"Orbiting planets reflect light, and from the perspective of a distant observer an illuminated planet undergoes phases resulting in a periodically-varying reflected light flux. While such reflected light is generally expected to be weak with the magnitude of the flux being well below noise level, in some cases reflected light variations are detectable with today's technology in the Kepler dataset. For example, a sinusoidal variation is visibly apparent along with a secondary eclipse in the HAT-P-7 light curve recorded by Kepler. In this paper we consider the problem of detecting extra-solar planets in Kepler data by modeling reflected light variations within a Bayesian estimation paradigm. We demonstrate that such detections are possible for a class of non-transiting planets using data from the Kepler Data Archive. The development of this computational technology could significantly increase the number of detectable planets within the Kepler dataset. Furthermore, understanding the potential capabilities of this technology could influence the design of future missions.","PeriodicalId":270712,"journal":{"name":"2012 Conference on Intelligent Data Understanding","volume":"335 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detection and characterization of non-transiting extra-solar planets in Kepler Data using reflected light variations\",\"authors\":\"K. Knuth, B. Placek, Zachary Richards\",\"doi\":\"10.1109/CIDU.2012.6382198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orbiting planets reflect light, and from the perspective of a distant observer an illuminated planet undergoes phases resulting in a periodically-varying reflected light flux. While such reflected light is generally expected to be weak with the magnitude of the flux being well below noise level, in some cases reflected light variations are detectable with today's technology in the Kepler dataset. For example, a sinusoidal variation is visibly apparent along with a secondary eclipse in the HAT-P-7 light curve recorded by Kepler. In this paper we consider the problem of detecting extra-solar planets in Kepler data by modeling reflected light variations within a Bayesian estimation paradigm. We demonstrate that such detections are possible for a class of non-transiting planets using data from the Kepler Data Archive. The development of this computational technology could significantly increase the number of detectable planets within the Kepler dataset. Furthermore, understanding the potential capabilities of this technology could influence the design of future missions.\",\"PeriodicalId\":270712,\"journal\":{\"name\":\"2012 Conference on Intelligent Data Understanding\",\"volume\":\"335 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Conference on Intelligent Data Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDU.2012.6382198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Conference on Intelligent Data Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDU.2012.6382198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection and characterization of non-transiting extra-solar planets in Kepler Data using reflected light variations
Orbiting planets reflect light, and from the perspective of a distant observer an illuminated planet undergoes phases resulting in a periodically-varying reflected light flux. While such reflected light is generally expected to be weak with the magnitude of the flux being well below noise level, in some cases reflected light variations are detectable with today's technology in the Kepler dataset. For example, a sinusoidal variation is visibly apparent along with a secondary eclipse in the HAT-P-7 light curve recorded by Kepler. In this paper we consider the problem of detecting extra-solar planets in Kepler data by modeling reflected light variations within a Bayesian estimation paradigm. We demonstrate that such detections are possible for a class of non-transiting planets using data from the Kepler Data Archive. The development of this computational technology could significantly increase the number of detectable planets within the Kepler dataset. Furthermore, understanding the potential capabilities of this technology could influence the design of future missions.