Astra Agro Lestari Tbk和Aneka TambangTbk的指数加权移动平均(EWMA)

Darman Saputra, Hidayati, Sumar, Khairiansyah
{"title":"Astra Agro Lestari Tbk和Aneka TambangTbk的指数加权移动平均(EWMA)","authors":"Darman Saputra, Hidayati, Sumar, Khairiansyah","doi":"10.2991/icoma-18.2019.49","DOIUrl":null,"url":null,"abstract":"Exponentially Weighted Moving Average Method the standard deviation calculation described in the previous section assumes that the data volatility is constant (homoscedastic) and can not be applied to unstable (heteroscedastic) data volatility.Therefore, one of the approaches to deal with the volatility of non-constant (heteroscedastic) data is the Exponentially Weighted Moving Average (EWMA) method developed. Data collection The data used in this study is daily stock price data from several stocks, namely PT. Agro Lestari (Persero) and Aneka Tambang Tbk which then will be sought stock return. Period of share data used from March 27, 2013 to March 27, 2014.From the result of VaR analysis shows that the risk of buying AALI shares is bigger that is 1050,25274 compared to buying ANTM stock that is equal to 49,7633,766 in year 2013-2014, so this is one of the reference in decision of share in 2014 2015. Assessing VaR this can be a strategy in the company's decision to take stock portfolio policies other. Keywords—Coagulation, Heteroskidastity,VaR EWMA, AALI, ANTM","PeriodicalId":162573,"journal":{"name":"Proceedings of the International Conference on Maritime and Archipelago (ICoMA 2018)","volume":"362 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponentially Weighted Moving Average (EWMA) in PT Astra Agro Lestari Tbk and PT Aneka TambangTbk\",\"authors\":\"Darman Saputra, Hidayati, Sumar, Khairiansyah\",\"doi\":\"10.2991/icoma-18.2019.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exponentially Weighted Moving Average Method the standard deviation calculation described in the previous section assumes that the data volatility is constant (homoscedastic) and can not be applied to unstable (heteroscedastic) data volatility.Therefore, one of the approaches to deal with the volatility of non-constant (heteroscedastic) data is the Exponentially Weighted Moving Average (EWMA) method developed. Data collection The data used in this study is daily stock price data from several stocks, namely PT. Agro Lestari (Persero) and Aneka Tambang Tbk which then will be sought stock return. Period of share data used from March 27, 2013 to March 27, 2014.From the result of VaR analysis shows that the risk of buying AALI shares is bigger that is 1050,25274 compared to buying ANTM stock that is equal to 49,7633,766 in year 2013-2014, so this is one of the reference in decision of share in 2014 2015. Assessing VaR this can be a strategy in the company's decision to take stock portfolio policies other. Keywords—Coagulation, Heteroskidastity,VaR EWMA, AALI, ANTM\",\"PeriodicalId\":162573,\"journal\":{\"name\":\"Proceedings of the International Conference on Maritime and Archipelago (ICoMA 2018)\",\"volume\":\"362 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Maritime and Archipelago (ICoMA 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/icoma-18.2019.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Maritime and Archipelago (ICoMA 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/icoma-18.2019.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

指数加权移动平均法上一节描述的标准差计算假设数据波动是恒定的(均方差),不能应用于不稳定的(异方差)数据波动。因此,指数加权移动平均(EWMA)方法是处理非恒定(异方差)数据波动的方法之一。本研究使用的数据是几只股票的每日股价数据,分别是PT. Agro Lestari (Persero)和Aneka Tambang Tbk,然后将寻求股票回报。2013年3月27日至2014年3月27日使用的份额数据。从VaR分析的结果来看,2013-2014年购买AALI股票的风险为1050,25274,而购买ANTM股票的风险为49,7633,766,因此这是2014 - 2015年股票决策的参考之一。评估风险价值可以作为公司决定采取其他股票投资组合政策的一种策略。关键词:凝血,异滑性,VaR, EWMA, AALI, ANTM
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponentially Weighted Moving Average (EWMA) in PT Astra Agro Lestari Tbk and PT Aneka TambangTbk
Exponentially Weighted Moving Average Method the standard deviation calculation described in the previous section assumes that the data volatility is constant (homoscedastic) and can not be applied to unstable (heteroscedastic) data volatility.Therefore, one of the approaches to deal with the volatility of non-constant (heteroscedastic) data is the Exponentially Weighted Moving Average (EWMA) method developed. Data collection The data used in this study is daily stock price data from several stocks, namely PT. Agro Lestari (Persero) and Aneka Tambang Tbk which then will be sought stock return. Period of share data used from March 27, 2013 to March 27, 2014.From the result of VaR analysis shows that the risk of buying AALI shares is bigger that is 1050,25274 compared to buying ANTM stock that is equal to 49,7633,766 in year 2013-2014, so this is one of the reference in decision of share in 2014 2015. Assessing VaR this can be a strategy in the company's decision to take stock portfolio policies other. Keywords—Coagulation, Heteroskidastity,VaR EWMA, AALI, ANTM
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信