静态测试中基于遗传算法的测试用例场景优先排序方法

Sangeeta Sabharwal, R. Sibal, Chayanika Sharma
{"title":"静态测试中基于遗传算法的测试用例场景优先排序方法","authors":"Sangeeta Sabharwal, R. Sibal, Chayanika Sharma","doi":"10.1109/ICCCT.2011.6075160","DOIUrl":null,"url":null,"abstract":"White box testing is a test technique that takes into account program code, code structure and internal design flow. White box testing is primarily of two kinds-static and structural. Whereas static testing requires only the source code of the product, not the binaries or executables, in structural testing tests are actually run by the computer on built products. In this paper, we propose a technique for optimizing static testing efficiency by identifying the critical path clusters using genetic algorithm. The testing efficiency is optimized by applying the genetic algorithm on the test data. The test case scenarios are derived from the source code. The information flow metric is adopted in this work for calculating the information flow complexity associated with each node of the control flow graph generated from the source code. This research paper is an extension of our previous research paper [18].","PeriodicalId":285986,"journal":{"name":"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A genetic algorithm based approach for prioritization of test case scenarios in static testing\",\"authors\":\"Sangeeta Sabharwal, R. Sibal, Chayanika Sharma\",\"doi\":\"10.1109/ICCCT.2011.6075160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"White box testing is a test technique that takes into account program code, code structure and internal design flow. White box testing is primarily of two kinds-static and structural. Whereas static testing requires only the source code of the product, not the binaries or executables, in structural testing tests are actually run by the computer on built products. In this paper, we propose a technique for optimizing static testing efficiency by identifying the critical path clusters using genetic algorithm. The testing efficiency is optimized by applying the genetic algorithm on the test data. The test case scenarios are derived from the source code. The information flow metric is adopted in this work for calculating the information flow complexity associated with each node of the control flow graph generated from the source code. This research paper is an extension of our previous research paper [18].\",\"PeriodicalId\":285986,\"journal\":{\"name\":\"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)\",\"volume\":\"352 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCT.2011.6075160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT.2011.6075160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

白盒测试是一种考虑程序代码、代码结构和内部设计流程的测试技术。白盒测试主要有两种——静态测试和结构测试。静态测试只需要产品的源代码,而不需要二进制文件或可执行文件,而在结构测试中,测试实际上是由计算机在构建的产品上运行的。本文提出了一种利用遗传算法识别关键路径簇来优化静态测试效率的方法。通过对测试数据应用遗传算法优化测试效率。测试用例场景来源于源代码。本文采用信息流度量来计算由源代码生成的控制流图的每个节点所关联的信息流复杂度。这篇研究论文是我们之前的研究论文[18]的延伸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A genetic algorithm based approach for prioritization of test case scenarios in static testing
White box testing is a test technique that takes into account program code, code structure and internal design flow. White box testing is primarily of two kinds-static and structural. Whereas static testing requires only the source code of the product, not the binaries or executables, in structural testing tests are actually run by the computer on built products. In this paper, we propose a technique for optimizing static testing efficiency by identifying the critical path clusters using genetic algorithm. The testing efficiency is optimized by applying the genetic algorithm on the test data. The test case scenarios are derived from the source code. The information flow metric is adopted in this work for calculating the information flow complexity associated with each node of the control flow graph generated from the source code. This research paper is an extension of our previous research paper [18].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信